6,120 research outputs found

    Emergence of Quintet Superfluidity in the Chain of Partially Polarized Spin-3/2 Ultracold Atom

    Get PDF
    The system of ultracold atoms with hyperfine spin F=3/2F=3/2 might be unstable against the formation of quintet pairs if the interaction is attractive in the quintet channel. We have investigated the behavior of correlation functions in a model including only s-wave interactions at quarter filling by large-scale density-matrix renormalization-group simulations. We show that the correlations of quintet pairs become quasi-long-ranged, when the system is partially polarized, leading to the emergence of various mixed superfluid phases in which BCS-like pairs carrying different magnetic moment coexist.Comment: 4 pages, 4 figures; significantly rewritten compared to the first versio

    Crop ontology in support of conservation and use of banana genetic resources

    Get PDF
    Poster presented at Workshop on Crop Ontology and Phenotyping Data Interoperability. Montpellier (France), 31 Mar-4 Apr 201

    Model-Checking with Edge-Valued Decision Diagrams

    Get PDF
    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD

    Zeeman effect in superconducting two-leg ladders: irrational magnetization plateaus and exceeding the Pauli limit

    Full text link
    The effect of a parallel magnetic field on superconducting two-leg ladders is investigated numerically. The magnetization curve displays an irrational plateau at a magnetization equal to the hole density. Remarkably, its stability is fundamentally connected to the existence of a well-known magnetic resonant mode. Once the zero-field spin gap is suppressed by the field, pairs acquire a finite momentum characteristic of a Fulde-Ferrell-Larkin-Ovchinnikov phase. In addition, S^z=0 triplet superconducting correlations coexist with singlet ones above the irrational plateau. This provides a simple mechanism in which the Pauli limit is exceeded as suggested by recent experiments.Comment: 4 pages, 6 figure

    Multimer formation in 1D two-component gases and trimer phase in the asymmetric attractive Hubbard model

    Get PDF
    We consider two-component one-dimensional quantum gases at special imbalanced commensurabilities which lead to the formation of multimer (multi-particle bound-states) as the dominant order parameter. Luttinger liquid theory supports a mode-locking mechanism in which mass (or velocity) asymmetry is identified as the key ingredient to stabilize such states. While the scenario is valid both in the continuum and on a lattice, the effects of umklapp terms relevant for densities commensurate with the lattice spacing are also mentioned. These ideas are illustrated and confronted with the physics of the asymmetric (mass-imbalanced) fermionic Hubbard model with attractive interactions and densities such that a trimer phase can be stabilized. Phase diagrams are computed using density-matrix renormalization group techniques, showing the important role of the total density in achieving the novel phase. The effective physics of the trimer gas is as well studied. Lastly, the effect of a parabolic confinement and the emergence of a crystal phase of trimers are briefly addressed. This model has connections with the physics of imbalanced two-component fermionic gases and Bose-Fermi mixtures as the latter gives a good phenomenological description of the numerics in the strong-coupling regime.Comment: 17 pages, 15 figure

    The quasi-periodic Bose-Hubbard model and localization in one-dimensional cold atomic gases

    Full text link
    We compute the phase diagram of the one-dimensional Bose-Hubbard model with a quasi-periodic potential by means of the density-matrix renormalization group technique. This model describes the physics of cold atoms loaded in an optical lattice in the presence of a superlattice potential whose wave length is incommensurate with the main lattice wave length. After discussing the conditions under which the model can be realized experimentally, the study of the density vs. the chemical potential curves for a non-trapped system unveils the existence of gapped phases at incommensurate densities interpreted as incommensurate charge-density wave phases. Furthermore, a localization transition is known to occur above a critical value of the potential depth V_2 in the case of free and hard-core bosons. We extend these results to soft-core bosons for which the phase diagrams at fixed densities display new features compared with the phase diagrams known for random box distribution disorder. In particular, a direct transition from the superfluid phase to the Mott insulating phase is found at finite V_2. Evidence for reentrances of the superfluid phase upon increasing interactions is presented. We finally comment on different ways to probe the emergent quantum phases and most importantly, the existence of a critical value for the localization transition. The later feature can be investigated by looking at the expansion of the cloud after releasing the trap.Comment: 19 pages, 20 figure

    Internal states of model isotropic granular packings. III. Elastic properties

    Get PDF
    In this third and final paper of a series, elastic properties of numerically simulated isotropic packings of spherical beads assembled by different procedures and subjected to a varying confining pressure P are investigated. In addition P, which determines the stiffness of contacts by Hertz's law, elastic moduli are chiefly sensitive to the coordination number, the possible values of which are not necessarily correlated with the density. Comparisons of numerical and experimental results for glass beads in the 10kPa-10MPa range reveal similar differences between dry samples compacted by vibrations and lubricated packings. The greater stiffness of the latter, in spite of their lower density, can hence be attributed to a larger coordination number. Voigt and Reuss bounds bracket bulk modulus B accurately, but simple estimation schemes fail for shear modulus G, especially in poorly coordinated configurations under low P. Tenuous, fragile networks respond differently to changes in load direction, as compared to load intensity. The shear modulus, in poorly coordinated packings, tends to vary proportionally to the degree of force indeterminacy per unit volume. The elastic range extends to small strain intervals, in agreement with experimental observations. The origins of nonelastic response are discussed. We conclude that elastic moduli provide access to mechanically important information about coordination numbers, which escape direct measurement techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
    corecore