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Internal states of model isotropic granular packings.

III. Elastic properties.

Ivana Agnolin∗ and Jean-Noël Roux†

Laboratoire des Matériaux et des Structures du Génie Civil‡, Institut Navier,

2 allée Kepler, Cité Descartes, 77420 Champs-sur-Marne, France

(Dated: December 18, 2007)

In this third and final paper of a series, elastic properties of numerically simulated isotropic
packings of spherical beads assembled by different procedures, as described in the first companion
paper, and then subjected to a varying confining pressure, as reported in the second companion
paper, are investigated. In addition to the pressure, which determines the stiffness of contacts
because of Hertz’s law, elastic moduli are chiefly sensitive to the coordination number z, which should
not be regarded as a function of the packing density. Comparisons of numerical and experimental
results for glass beads in the 10kPa − 10MPa pressure range reveal similar differences between
dry samples prepared in a dense state by vibrations and lubricated packings, so that the greater
stiffness of the latter, in spite of their lower density, can be attributed to a larger coordination
number. Effective medium type approaches, or Voigt and Reuss bounds, provide good estimates of
bulk modulus B, which can be accurately bracketed, but badly fail for shear modulus G, especially
in low z configurations under low pressure. This is due to the different response of tenuous, fragile
networks to changes in load direction, as compared to load intensity. In poorly coordinated packings,
the shear modulus, normalized by the average contact stiffness, tends to vary proportionally to the
degree of force indeterminacy per unit volume, even though this quantity does not vanish in the
rigid limit. The elastic range extends to small strain intervals and compares well with experimental
observations on sands. The origins of nonelastic response are discussed. We conclude that elastic
moduli provide access to mechanically important information about coordination numbers, which
escape direct measurement techniques, and indicate further perspectives.

PACS numbers: 45.70.-n, 83.80.Fg, 46.65.+g, 62.20.Fe

I. INTRODUCTION

The mechanical properties of granular materials and
their relations to the packing microstructure are cur-
rently being investigated by many research groups. As a
simple model, long studied for its geometric aspects [3, 4],
the packing of equal-sized spherical balls is also mechan-
ically characterized in the laboratory [5, 6, 7, 8, 9], and
by numerical means, relying on discrete, granular level
modeling [8, 10, 11, 12, 13, 14].

The present paper is the last one in a series of three,
about geometric and mechanical properties of bead pack-
ings obtained by numerical simulations. It focusses on
the elastic properties of isotropically compressed sam-
ples. The study is based on the configurations for which
the packing processes and resulting microstructure were
studied in paper I [1], while paper II [2] reported on the
effects of isotropic compressions and pressure cycles. The
results presented here, although perhaps better appreci-
ated on knowing the contents of papers I and II, can be
understood without reading these previous contributions.

∗Present address: Geoforschungszentrum, Haus D, Telegrafenberg,
D-14473 Potsdam Germany
‡LMSGC is a joint laboratory depending on Laboratoire Central
des Ponts et Chaussées, École Nationale des Ponts et Chaussées
and Centre National de la Recherche Scientifique
†Electronic address: jean-noel.roux@lcpc.fr

Elastic properties of granular assemblies are probed
when small stress increments are superimposed on a pre-
stressed equilibrium configuration, either on controlling
very small strains in a static experiment [6, 15, 16, 17] or
in dynamical ones, relying on resonance modes [18, 19,
20], or sound propagation [6, 7, 15, 17, 20, 21, 22, 23, 24].
Elastic behavior of granular materials is only applica-
ble for very small strain increments, typically of or-
der 10−5 or even 10−6 in usual conditions, i.e., with
sands under confining stresses between 10 kPa and a few
MPa [6, 15, 16, 17]. It has been checked in such cases that
static measurements of elastic moduli, with devices accu-
rate enough to control such small strains are consistent
with “dynamical” ones, i.e. deduced from experiments
on wave propagation or resonance frequencies. Experi-
mental soil mechanics have achieved a high level of so-
phistication, with significant progress over the last twenty
years [25, 26], and accurate measurements of the mechan-
ical response of granular materials in the very small strain
régime are one example thereof. Coincidence of elastic
moduli values obtained by different means is reported,
e.g., in [15, 17, 20].

The elastic moduli should not be confused with the
slopes of stress-strain curves on the scale of the strain
level (usually in the 1% range) corresponding to the full
mobilization of internal friction. Such slopes are consid-
erably smaller than true elastic moduli (by more than an
order of magnitude), and do not correspond to an elas-
tic, reversible response. In this respect, the frequent use,
for engineering applications, of a simplified elastoplastic
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behavior, in which the material is linear elastic until the
Mohr-Coulomb criterion for plasticity is reached, as pre-
sented in Ref. [27], should not be misinterpreted. Such
crude models, in which strains are elastic and reversible
up to the complete mobilization of internal friction, are
resorted to in engineering practice when detailed infor-
mation on the constitutive law are not available, but the
“elastic moduli” introduced in those simplified constitu-
tive relations are merely convenient parameters enabling
one to perform approximate calculations.

In micromechanical [28, 29] and numerical [8, 12, 30]
studies, elastic properties are associated with the defor-
mations of a fixed contact network, and should therefore
correspond to the “true elastic” behavior observed in the
laboratory for very small strain intervals. Indeed, ex-
cept in very special situations in which the effects of fric-
tion are suppressed and geometric restructuration is re-
versible [31, 32], the irreversible changes associated with
network alterations or rearrangements preclude all kind
of elastic modelling. Elastic properties are attached to
one specific contact set, and hence of limited relevance to
the rheology of granular materials. Nervertheless, elas-
tic properties are interesting because they might provide
access, in a non-destructive way, to geometric data on
the contact network, such as coordination numbers. Such
variables are still virtually inaccessible to direct measure-
ments, even with sophisticated visualization techniques,
as emphasized in paper I [1], but they are very likely, in
turn, to influence the constitutive laws for larger strains.

This paper is organized in the following way. We first
recall the properties of the model material we are study-
ing (Section II), along with basic definitions and prop-
erties pertaining to the elasticity of granular packings.
Then, useful results on the pressure-dependent internal
states of the various types of configurations introduced
and studied in papers I and II [1, 2] are summarized in
Section III. Next, the values of elastic constants in the
different configuration series, as a function of (isotropic)
confining pressure, are presented in Section IV, where
their relations to internal structure are also discussed.
Section V is devoted to the particular behavior of elastic
moduli in the tenuous contact networks of poorly coor-
dinated configurations. Numerical results are confronted
to experimental ones in Section VI. Some results about
the extension of the elastic range are given in Section VII.
Section VIII discusses the results and indicates some fur-
ther perspectives.

II. NUMERICAL MODEL AND BASIC

DEFINITIONS

Packings of n spherical beads are simulated with
molecular dynamics, in which equations of motion re-
sulting from Newton’s laws are solved for the particle
positions and rotations. Thanks to a suitably adapted
form of the Parrinello-Rahman deformable cell molecular
dynamics technique [33, 34], as described in paper I [1],

we request all three diagonal components of the Cauchy
stress tensor, denoted as σαα to be equal, in equilibrium,
to prescribed values Σα, all chosen to coincide with a
pressure P in this study of isotropic states. Differences
between σαα and Σα entail some evolution in the cell size
parameters. σαα is given in equilibrium by the classical
formula:

σαα =
1

Ω

∑

i<j

F
(α)
ij r

(α)
ij , (1)

where the sum runs over all pairs in contact, F
(α)
ij is the

α coordinate of the force Fij exerted by grain i onto its

neighbor j at their contact, while r
(α)
ij is the α coordinate

of vector rij , pointing from the center of i to the center
of j. From Eqn. (1) one can easily deduce a simple and
useful relation between pressure P = (σ11 + σ22 + σ33)/3
and the average normal contact force 〈N〉 between mono-
sized spheres of diameter a, involving solid fraction Φ and
coordination number z :

P =
zΦ〈N〉
πa2

, (2)

The corresponding dynamical equations used to impose
stresses are described in paper I [1], and we briefly recall
here the essential ingredients of the model for a study
of the elastic response of packings that have been first
assembled and compressed, as reported in papers I and
II. Dynamical aspects of the model, in particular (inertia,
viscous dissipation) play no role in the determination of
elastic moduli, for which our calculations are based on the
building of the stiffness matrix of the contact network.

A. Local stiffnesses

We consider spherical beads of diameter a, with the
elastic properties of glass: Young modulus E = 70 GPa,
Poisson ratio ν = 0.3. They interact in their contacts by
the Hertz law, which states that the elastic normal force
N is proportional to h3/2, h being the normal deflection
of the contact, so that the incremental normal stiffness
dN
dh , with the notation Ẽ = E

1−ν2 , is given by:

KN =
dN

dh
=

Ẽ
√

a

2
h1/2 =

31/3

2
Ẽ2/3a1/3N1/3 (3)

The tangential elastic force is to be incrementally evalu-
ated with a simplified Mindlin-Deresiewicz form [35] on
assuming the tangential stiffness KT to stay proportional
to KN , and hence a function of N :

KT = αT KN with αT =
2 − 2ν

2 − ν
. (4)

The tangential force T is constrainted by the Coulomb
condition ||T|| ≤ µN , with friction coefficient µ set to
0.3, and additional conditions are introduced to ensure
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thermodynamic consistency and objectivity (see paper
I [1, Sec. II, appendices A and B]).

All our results will be stated in a form independent of
bead diameter a. All dimensionless results – such as e.g.

ratios of elastic moduli of the granular material to Ẽ –
depend, in addition to ν, on a reduced stiffness parameter
we define as

κ =

(

Ẽ

P

)2/3

.

Typical values of contact deflections h scale as κ−1a.
Let Nc denote the number of force-carrying contacts.

In every contacting pair i-j, we arbitrarily choose a
“first” grain i and a “second” one j, and define the rel-
ative displacement vector δuij as the difference between
the displacement of the contact point as belonging to
solid i and its displacement as a point belonging to solid
j, both regarded as rigid.

In each contact the force Fij that is transmitted from
i to j is split into its normal and tangential components
as Fij = Nijnij + Tij . The static contact law relates
the 3Nc-dimensional contact force increment vector ∆f ,
formed with the values ∆Nij , ∆Tij of the normal and
tangential parts of all contact force increments, to δu:

∆f = K · δu. (5)

This defines the (3Nc×3Nc) matrix of contact stiffnesses
K. K is block diagonal (it does not couple different con-
tacts), and we shall refer to it as the local stiffness matrix.
The 3 × 3 block of K corresponding to contact i, j, K

ij

is diagonal itself provided friction is not fully mobilized,
and contains stiffnesses KN(hij) and (twice in 3 dimen-
sions) KT (hij) as given by (3) and (4):

KE

ij
=





KN(hij) 0 0
0 KT (hij) 0
0 0 KT (hij).



 (6)

This simple form of K
ij

ignores some non-diagonal terms

that appear when the normal force decreases, or for slid-
ing contacts. The effects of those terms are discussed and
tested in Appendix A, as well as the possible use of more
elaborate contact laws [36], in which KT /KN is not kept
constant.

B. Global rigidity and stiffness matrices

When elastic properties are investigated, small dis-
placements about an equilibrium configuration are dealt
with to first order (as an infinitesimal motion, i.e. just
like velocities), and related to small increments of applied
forces, moments and stresses. We use periodic bound-
ary conditions in our simulations, and the dimensions
Lα (α = 1, 2, 3) of the parallelipipedic simulation cell

are degrees of freedom of the system, while all three di-
agonal components of the stress tensor are externally im-
posed [1, 2]. We use three strain parameters defined as
the relative changes of those lengths, from their values in
a reference state:

ǫα = −∆Lα/Lα

With our conventions, shrinking strains and compressive
stresses are positive.

Let us now recall the definition of the rigidity ma-

trix (not to be confused with the stiffness matrix), as
introduced in paper I. The grain center displacements
(ui)1≤i≤n are conveniently written as

ui = ũi − ǫ · ri, (7)

with a set of displacements ũi satisfying periodic bound-
ary conditions in the cell with the current dimensions,
ǫ denoting the diagonal strain matrix with coefficients
ǫα. Gathering all coordinates of particle (periodic) dis-
placements and rotation increments, and strain parame-
ters one defines a displacement vector in a space with
dimension equal to the number of degrees of freedom
Nf = 3n + 3 (recall n is the number of beads),

U = ((ũi, ∆θi)1≤i≤n, (ǫα)1≤α≤3) . (8)

The normal unit vector nij points from i to j (along
the line joining centers for spheres). The relative dis-
placement δuij , for spherical grains with radius R, reads

δuij = ũi + δθi × Rnij − ũj + δθj × Rnij + ǫ · rij , (9)

in which rij is the vector pointing from the center of the
first sphere i to the nearest image (by the periodic trans-
lation group of the boundary conditions) of the center of
the second one j. The normal part δuN

ij of δuij is the
increment of normal deflection hij in the contact.

The rigidity matrix G is 3Nc × Nf -dimensional, it is
defined by the linear correspondence expressed by rela-
tion (9), which transforms U into the 3Nc-dimensional
vector of relative displacements at contacts δu:

δu = G · U (10)

External forces Fi and moments Γi applied to grain
centers, and diagonal Cauchy stress components Σα can
be gathered in one Nf -dimensional load vector F

ext:

F
ext = ((Fi,Γi)1≤i≤n, (ΩΣα)1≤α≤3) , (11)

chosen such that the work in a small motion is equal to
F

ext ·U. The equilibrium equations – the statements that
contact forces f balance load F

ext – is simply written with
the tranposed rigidity matrix, as

F
ext = T

G · f . (12)

This is of course easily checked on writing down all force
and moment coordinates, as well as the equilibrium form
of stresses, Eqn. 1 with σαα = Σα for all α.
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Given (10), which defines the rigidity matrix, relation
(12) is a statement of the theorem of virtual work (see
paper I [1]).

Returning to the case of small displacements associated
with a load increment ∆F

ext, one may write, to first
order in U,

∆F
ext = K · U, (13)

with a total stiffness matrix K, comprising two parts,

K
(1) and K

(2), which we respectively refer to as the con-

stitutive and geometric stiffness matrices. K
(1) results

from Eqns. 10, 5 and 12

K
(1) = T

G · K · G (14)

K
(2) is due to the change of the geometry of the packing,

and is written down in Appendix B, where it is also shown
to be negligible in general.

To the rigidity matrix are associated the concepts of
force and velocity (or displacement) indeterminacy, of
relative displacement compatibility and of static admis-
sibility of contact forces. Those definitions are given in
paper I, where they are used to discuss the limit of iso-
static packings [32].

C. Grain-level and macroscopic elasticity

We now discuss the conditions for which the response
to load increments of a prestressed granular packing in
mechanical equilibrium can be described as elastic, and
explain how macroscopic elastic moduli are computed in
our simulations.

1. Some necessary approximations

Elasticity implies the existence of an elastic potential
(a function of U) from which forces are derived. If force
increments are written as linearly depending on displace-
ments, as in (13), the corresponding stiffness matrix K

should be unique (the same for all U vectors) and sym-
metric. Strictly speaking, the differences in the form
of the local stiffness matrix K on the direction of dis-
placements precludes the definition of an elastic response.
This is discussed in Appendix A. We could check that
this effect is quantitatively negligible, and that taking all
K

ij
block values as in Eqn. (6) is a very good approxima-

tion. Likewise, the implementation of more complicated
contact laws accounting for a gradual change of tangen-
tial stiffness KT as a function of ||T|| (see Appendix A),
entails negligible changes in the values of elastic moduli.

Moreover, the non-symmetric geometric contribution

K
(2) is also negligible – provided simple precautions are

applied to prevent the free motion of divalent beads, as
explained in Appendix B. These motions, as checked in
paper I [1], do not jeopardize global stability, and they

are the only mechanisms (i.e., non-zero elements of the
kernel of rigidity matrix G) of the backbone. On us-
ing the symmetric diagonal form (6) for all contacts, K
will be symmetric and positive definite. In view of (14),

the kernel of K
(1) (the “floppy modes” of the constitu-

tive stiffness matrix) coincides with the kernel of G (the
“mechanisms”). A suitable elimination of the localized
free motion of 2-coordinated grains (see Appendix B) en-
ables one to work with a positive definite global stiffness
matrix, and therefore with a well-behaved elastic poten-
tial energy. The elastic regime, however, is only defined
on approximating the contact laws as elastic.

Finally, as explained in Appendix C, initial confining
stresses entail very small corrections to elastic moduli, of
order P , which we also neglect.

2. Computation of elastic moduli

In order to evaluate macroscopic elastic moduli or com-
pliances, one can apply stress increments and measure
the resulting strains. With our choice of boundary con-
ditions and degrees of freedom, we choose load incre-
ments ∆F

ext with all coordinates set to zero except one
of the three last ones, say Ω∆σαα, corresponding to a
diagonal stress increment, according to definition (11).
Then we solve the system of equations (13) for the un-
known displacement vector U. Its 3 last coordinates
are identified as diagonal strain components, according
to definition (8). The effective elastic properties of the
packing being isotropic, we obtain ǫα = σα/E∗, and
ǫβ = −ν∗σα/E∗ for β 6= α, in which E∗ and ν∗ are the
effective macroscopic Young modulus and Poisson coef-
ficient of the bead packing. On changing α one obtains
different estimates of those macroscopic properties, which
should coincide in the limit of large systems.

This procedure is used with the numerical samples pre-
pared in equilibrium states under varying isotropic pres-
sure P , as explained in papers I and II (see Section III
below). All results are averaged over sets of 5 statisti-
cally similar samples of n = 4000 grains each, and error
bars on curves (which are often as small as the symbols)
correspond to one standard deviation on each side of the
mean value.

3. Minimization properties

In order to write down bounds on macroscopic elastic
moduli, the following minimization properties are use-
ful [37]. First, solving (13) for U is equivalent to mini-
mizing the following potential energy:

W1(U) =
1

2
U · K ·U − ∆F

ext ·U. (15)

Then, the contact force vector increment ∆f minimizes

W2(∆f) =
1

2
∆f · K−1∆f , (16)
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subject to the constraint that it should be statically ad-
missible with load increment ∆F

ext. Minimal values in
(15) and (16) are opposite to each other, and are identi-
fied in the limit of large systems with the corresponding
macroscopic elastic energy, i.e.

∓Ω

2
ǫ : C : ǫ = ∓Ω

2
∆σ : C−1 : ∆σ,

in which C denotes the 4th rank tensor of elastic moduli.

Those variational properties are analogous to classical re-
sults in elasticity of heterogeneous continua [38], and will
be used in Section IV (technical details being provided
in Appendix D).

III. PROPERTIES OF EQUILIBRIUM

CONFIGURATIONS

We summarize here some necessary information about
configurations assembled by different methods, as re-
ported in paper I [1], and then isotropically compressed
to various level of pressure, as described in paper II [2].
Useful notations and properties are also briefly recalled.

A. Sample preparation and compression

Four different configuration series which, as in papers
I and II, we keep referring to as A to D, were prepared
under a rather low pressure (κ = 39000, corresponding
to 10 kPa for glass beads, or κ = 181000, correspond-
ing to 1 kPa), and then quasistatically compressed up to
100 MPa (κ ≃ 80), with friction coefficient µ = 0.3 in the
contacts.

They are characterized in terms of solid fraction Φ, co-
ordination number z∗ of the force-carrying structure or
backbone of the packing, proportion of rattlers x0 (those
grains do not participate in force transmission at equi-
librium), normal force distribution, friction mobilization,
and geometric data such as distribution of interneighbor
gaps and local order parameters. z∗ relates to the global
coordination number z = 2Nc/n as z∗ = z/(1 − x0).

Configurations A, B and D were assembled on com-
pressing a granular gas. Configurations C are obtained
from A and are supposed to mimic, in a simplified way,
the dense states obtained by vibration.

Type A samples are assembled without friction, and
correspond to the ideal “random close packing” state
(RCP), which according to the available numerical ev-
idence is uniquely defined, provided the compaction pro-
cess is fast enough to avoid all incipient crystalline or-
der nucleation [1, Section III]. Their solid fraction, ac-
cordingly, is slightly below 0.64 at low pressure, while
the coordination number is close to 6, with few rattlers
(x0 ≃ 1.5%). Type A configurations may thus be re-
garded as a simple model for grains that are perfectly
lubricated in the assembling stage, but such that dry in-
tergranular contacts have a frictional behavior (µ = 0.3)

in quasistatic compression. As a variant, another set of
samples, which we denoted as the A0 series, was prepared
on quasistatically compressing the solid samples without
friction.

B states are similar to A ones, except that they are as-
sembled with a small coefficient of friction, µ0 = 0.02, as
a crude model for imperfect lubrication in the fabrication
stage. B states have a smaller solid fraction, Φ ≃ 0.625
instead of 0.637 for κ < 10−4, and a slightly smaller co-
ordination number: z∗ ≃ 5.8 instead of 6 at low pressure.
D states are the loosest of the four series, with Φ ≃ 0.593
under 1 kPa, less contacts (z∗ ≃ 4.55 at low P ) and more
than 10% of rattlers. Remarkably, the density of vibrated
C states is close to the RCP value (Φ ≃ 0.635), but their
contact networks are as tenuous as D ones (z∗ ≃ 4.55 at
low P ), with even more rattlers (13%) at low pressure.
C configurations are thus denser than B ones, but much
less coordinated.

The evolution of Φ, z∗ and x0 in a pressure cycle up to
100 MPa, and then back to the initial value, are studied in
paper II [2, Figs. 1 and 2]. While density increases with
P , so do the coordination numbers, most notably above
a few MPa, but upon decompressing many contacts are
lost and coordination numbers, if initially high, as in the
A and B cases, end up with much lower values, similar
to those of poorly coordinated C and D states. Solid
fraction Φ displays very little hysteresis in such pressure
cycles. A0 (frictionless) states behave very similarly to
A ones in compression, but do not lose their high coordi-
nation number on reducing the pressure. The reader can
refer to papers I and II for more details (e.g., information
on force distribution and friction mobilization).

B. Moments of normal force distributions

In paper I, reduced moments of the distribution of nor-
mal forces N were introduced, with the following nota-
tion:

Z(α) =
〈Nα〉
〈N〉α . (17)

Another quantity, closely related to Z(5/3) is useful to
evaluate elastic energies from contact forces. If rTN is

the ratio
||T||
N

in any contact, then we define

Z̃(5/3) =
〈N5/3(1 +

5r2

TN

6αT
)〉

〈N〉5/3
. (18)

αT denotes the stiffness ratio defined in (4).

It is convenient to use those definitions to write down
averages of various quantities associated with the con-
tacts and proportional to some power of the normal force.
As a useful example, let us relate the average normal stiff-
ness of contacts to the pressure. This average, from (3),
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reads

〈KN 〉 =
1

Nc

∑

i<j

31/3

2
Ẽ2/3a1/3N

1/3
ij .

The sum, running over all contacting pairs i, j, is then
transformed, using Eqns 2, 17 (with α = 1/3) and ex-
pressing the contact density as

NC

Ω
=

3zΦ

πa3
,

into a relation conveniently displaying the dependence on
pressure, solid fraction and coordination number:

〈KN 〉 =
31/3

2
Ẽ2/3Z(1/3)

π1/3aP 1/3

z1/3Φ1/3
. (19)

This expression of 〈KN 〉 will be used on estimating elastic
moduli.

C. Degree of force indeterminacy

In paper I, we also discussed whether the degree of
force indeterminacy of equilibrated packings could ap-
proach zero in frictional packings in the rigid, κ → +∞
limit – this being a known property of frictionless sys-
tems [32]. While the degree of force indeterminacy h is
directly related to the backbone coordination number z∗

in frictionless packings, for which

h =
1

2
n(1 − x0)(z

∗ − 6), (20)

its value is more exactly evaluated, for non-vanishing in-
tergranular friction coefficients, on defining a slightly cor-
rected value of z∗, denoted as z∗∗:

z∗∗ = z∗ +
2x2

3(1 − x0)
, (21)

where x2 is the proportion of 2-coordinated grains (which
are involved in the mechanism motions mentioned in
Sec. II C and Appendix B). Then the degree of force
indeterminacy is given by

h =
3

2
n(1 − x0)(z

∗∗ − 4). (22)

x2 values raise to about 2.5% in configurations C and
D, in which the ratio of the degree of force indetermi-
nacy to the number of backbone degrees of freedom,
i.e., h/[6n(1 − x0)], does not decrease below 14%. Only
in packings assembled with an infinite friction coeffi-
cient [1, 39], called Z configurations in paper I, did we
obtain nearly vanishing h values (h/[6n(1−x0)] decreas-
ing to about 3/100).

IV. ELASTIC MODULI

A. Numerical results

Elastic moduli of equilibrated configurations are eval-
uated as indicated in Section II C 2. Each data point
on the graphs, throughout the sequel, is based on sev-
eral macroscopically equivalent load vectors in all 5 avail-
able samples for each one of the investigated macroscopic
states. Fig. 1 displays on logarithmic plots the pres-
sure dependence of shear and bulk moduli in all series
A, A0, B, C and D during the first compression. Fig. 1
clearly shows that the moduli are primarily sensitive to
coordination number, with well coordinated samples A,
B (and A0) displaying larger moduli than C and D, in
which the contact network is more tenuous (z∗ ≃ 4.5
and z ≃ 4 under low pressure [1, 2]). Moduli are much
less sensitive to packing fraction Φ: C and D results are
close to each other at low pressure, when ΦC ≃ 0.638
and ΦD ≃ 0.594 [1, 2]. They are not strongly influ-
enced either by the width of the force distribution: A
and A0 states have almost the same moduli (only some
values of G below 100 kPa differ by more than 5%),
whereas the probability distribution function of normal
forces strongly differ as pressure grows (see paper II [2,
Fig. 5]).

The increase of elastic constants with pressure natu-
rally stems from the dependence of contact stiffnesses
on the force they transmit, as expressed by Eqns. (3)
and (4), and due to relation (2) the typical contact stiff-
ness grows as P 1/3 (see Eqn. 19), which is the expected
pressure dependence for macroscopic moduli. Power
laws are often used to relate elastic moduli to confin-
ing stresses [16, 21, 22, 40], and possible origins for the
observation of exponents larger than 1/3 (as on Fig. 1)
have been discussed by several authors [40, 41]. One pos-
sible explanation is the creation of new contacts under
the effect of the increase of the confining pressure, which
leads to a denser, stiffer contact network. This mech-
anism appears in particular to account for the pressure
dependence of elastic moduli in regular, crystal-like ar-
rays of identical particles as in the experiments described
in Refs. [5] and [7]. Because of the slight lattice distor-
sions obtained with imperfect and slightly polydisperse
spheres, the contact coordination number, which is lim-
ited, in the rigid limit of κ → ∞, to 4 in 2D and 6 in
3D [32], is smaller than the nearest neighbor coordination
number on the dense lattices studied (such as 12 for FCC
in 3D [5] and 6 for the 2D triangular lattice [7]). This
leaves a large number of neighbor pairs at a distance re-
lated to the width of the particle size distribution, where
additional contacts are induced by higher pressures. This
has been shown by numerical simulations [42] to produce
a pressure dependence of moduli closer to P 1/2 in some
pressure range, a phenomenon predicted in part by a the-
ory presented in [43]. With general, amorphous pack-
ings, the situation is different because distances between
neighbors that are not in contact are no longer related
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(a) B versus P

(b) G versus P

FIG. 1: (Color online) Bulk modulus B (a) and shear modu-
lus G (b) versus confining pressure P for series A (red, crosses,
continuous line), A0 (red, round dots, dotted line), B (blue,
asterisks, dotted line), C (black, square dots, continuous line)
and D (green, open squares, dotted line). Note that results
for A, A0 and B are hardly distinguishable. The dashed blue
line marked “KJ” corresponds to some experimental data [6]
between 50 and 400 kPa commented in Section VI

to a small polydispersity parameter, but are distributed,
approximately as a power law in some range (see paper
I [1]), in a way that is characteristic of the disordered
geometry. Departures from the P 1/3 scaling are larger in
low z states (Fig. 1), and the largest in C configurations,
in which contact gains under growing P are faster than
in D ones. However, apparent power laws with expo-
nents larger than 1/3 are observed at very low pressures,
when, from paper II [2, Fig.2a], the increase of z with P
is rather slow. Moreover, in the case of C and D systems,

the exponent of the power law fit for the pressure depen-
dence of shear modulus G is significantly larger (about
0.5) than the one for bulk modulus B (about 0.4). These
features are discussed in paragraph IVB below. Changes
of ratio G/B as P grows are equivalent to changes of the
Poisson ratio of the granular material, given by

ν∗ =
3B − 2G

6B + 2G
. (23)

ν∗ decreases only slightly as P grows for well coordinated
states A and B, from ν∗ ≃ 0.13 at P=10 kPa to ν∗ ≃ 0.09
under 100 MPa. Its larger variations in poorly coor-
dinated configurations C and D, for which it decreases
from 0.3 to about 0.1 in the same range, corresponds to
G increasing with P faster than B.

B. Simple prediction schemes and relations to

microstructure

The simplest approximation scheme to estimate the
values of elastic moduli, knowing the density and the co-
ordination number, is based on the assumption of homo-
geneous strains (or, equivalently, of affine displacements).
It was introduced, e.g. in [28], and it is also used by
Makse et al. in Refs. [8, 12] (where it is called an effec-
tive medium theory). It amounts to evaluating the stress
increments corresponding to strain ǫ using formula (1),
in which the contact force variations are evaluated, via

Eqn. (5), with relative displacements given by

ui − uj = ǫ · (rj − ri).

Using the isotropy of the distribution of contact orien-
tations, and replacing all normal forces by their average
value in the computation of contact stiffnesses, this re-
sults, using relation (2), in the following estimates.

Be =
1

2

(

zΦẼ

3π

)2/3

P 1/3

Ge =
6 + 9αT

10
Be.

(24)

One thus finds the expected P 1/3 dependence, and ob-
tains moduli proportional to (zΦ)2/3. Formulae (24) also
predict a constant G/B ratio, and thus a constant Pois-
son ratio:

νe =
6(1 − αT )

26 + 9αT
≃ 0.032 (25)

This latter estimation is considerably smaller than the
measured values which are given above (shortly after
Eqn. 23), as noted in [8]. This mainly stems from the
inaccuracy of the estimated value of G [12], as we shall
see. Eqn. 24 suggests to represent ratios

br =
B

Ẽ2/3P 1/3

gr =
G

Ẽ2/3P 1/3

(26)
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as functions of (zΦ)2/3, which is done on Fig. 2. Fig. 2

(a) br versus (zΦ)2/3

(b) gr versus (zΦ)2/3

FIG. 2: (Color online) Reduced moduli, as defined in (26),

in units of Ẽ2/3P 1/3 as functions of (zΦ)2/3, same colors and
symbols as on Fig. 1. The estimates given in (24) are plotted
as straight dotted lines. Moduli are plotted for all configura-
tions in the pressure cycle, showing an approximate collapse
on a single curve.

shows that Ge is a significantly poorer estimate of G than
Be of B, as already noted in [12], for samples of type A or
B, and even more so in low coordination number configu-
rations C and D. It also shows that the elastic moduli, as
a first approximation, can be thought of as determined by
z and Φ, the former quantity, as it varies more between
different sphere packings, being the most influential. The
present study can thus be regarded as a first step towards
a method to infer coordination numbers nfrom the elastic
moduli. As stressed in paper I, coordination numbers are

virtually inaccessible to direct measurements. (It should
nevertheless be recalled that the present work is limited
to isotropic configurations, implying isotropy of fabric as
well as isotropy of stresses). In this respect it is interest-
ing to note that the configurations of lower coordination
number obtained upon decompressing A and B ones af-
ter they first reach a high pressure level (see paper II [2])
yield data points on Fig. 2 that stay close to the C and
D ones corresponding to the same product zΦ.

An interesting alternative to the direct use of for-
mula (1) is to exploit the variational property expressed
by (15), as explained in Appendix D. This shows that Be

and Ge are upper bounds to the true moduli. Account-
ing for the distribution of forces (see the derivation of
Eqn. 19), those bounds can be slightly improved, yielding
the analogs of the Voigt upper bound for the macroscopic
elastic moduli of a mesoscopically disordered continuous
material:

B ≤ BVoigt = BeZ(1/3)

G ≤ GVoigt = GeZ(1/3),
(27)

where Z(1/3), as defined in (17), is always strictly smaller
than 1. For the bulk modulus, one can also take advan-
tage of the second variational property, expressed by (16).
As explained in Appendix D, this requires a trial set of
contact force increments which balance the applied load
increment. When the stress increment is proportional to
the preexisting stress, one may take increments of con-
tact forces that are also proportional to their initial val-
ues. No such forces balancing a shear stress are available
for isotropically prestressed configurations. One thus ob-
tains (see Appendix D for details) a lower bound for B
which is analogous to the Reuss bound for the macro-
scopic elastic bulk modulus of a mesoscopically disor-
dered continuous material. This lower bound BReuss in-
volves the dimensionless quantity Z̃(5/3) defined in (18),
and enables one to bracket the bulk modulus:

Be

Z̃(5/3)
= BReuss ≤ B ≤ BVoigt = BeZ(1/3). (28)

The ratio of the upper bound to the lower one is there-
fore related to the shape of the distributions of normal
forces and to the mobilization of friction. Fig. 3 displays
ratios B/Be, BVoigt/Be, and BReuss/Be versus (grow-
ing) pressure P in configurations A and C. These data
show that in both cases of high (A) and low (C) initial
coordination number, the bracketing of B given by (28)
is quite accurate, the relative difference between upper
and lower bounds staying below 10% except at the low-
est pressure for A, and around 15% for C. The Reuss
estimate is better than the Voigt one in general. It is
even excellent in the A case for all but the two lowest
pressure values studied (B appears to be slightly smaller
than its lower bound at very high pressure because we
neglected the reduction of intercenter distances between
contacting grains in the evaluation of the bounds). This
estimate (see Appendix D) becomes exact when the trial
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FIG. 3: (Color online) Ratio B/Be (symbols connected with
continuous line, error bars), and its Voigt and Reuss bounds
(symbols connected by dotted lines) in configurations A (red,
crosses) and C (black, square dots), during compression. B
and D samples respectively behave similarly to A and C.

force increments used are the right ones, and assumes
therefore that the shape of the normal force distribution
and the level of friction mobilization do not change with
pressure. The observation, reported in paper II [2], that
such quantities are indeed nearly independent on pressure
in A states (except at the lowest pressure), is therefore
consistent with the success of the Reuss type estimate for
B in that case.

Yet, for G no Reuss estimate is available, and the use of
the Voigt one with the factor Z(1/3) hardly reduces the
discrepancy between Ge and G: this factor can be read
on Fig. 3, where it coincides with the upper bound, and
hence GVoigt is only smaller than Ge by a few percent. It
thus overestimates the true shear modulus by 30 to 40%
in well-coordinated states, and even by a factor of 3 in
poorly coordinated ones at low pressure.

C. Fluctuations and more sophisticated prediction

schemes.

The Voigt or mean field approach ignores fluctuations
in grain displacements and rotations. As an indicator
of the amplitude of such fluctuations is the average of
squared particle displacement fluctuationss, we measured
the ratio

∆2 =
1

n∗||ǫ||2
n∗
∑

i=1

||ũi||2, (29)

in which the squared strain amplitude, ||ǫ||2 = ǫ21+ǫ22+ǫ23,
normalizes the average of squared displacement fluctu-
ations, as defined in (7), the sum running over the
n∗ = n(1 − x0) force-carrying grains. Fig. 4 displays
the values of ∆2 evaluated in all samples at the different

values of the confining pressure. ∆2 is distributed over
some fairly wide interval in similar configurations, but
is systematically larger for purely deviatoric stress incre-
ments than for isotropic pressure steps and has a clearcut
decreasing trend as a function of backbone coordination
number z∗. (To add data points with lower z∗ on Fig. 4

FIG. 4: (Color online) ∆2, as defined in (29), versus backbone
coordination number z∗, for isotropic stress increments (red
asterisks, green for Z states) and pure deviatoric ones (black
crosses, blue for Z states).

we also used the Z series, infinite friction samples, as
described in paper I and Section III, isotropically com-
pressed and equilibrated at five pressure levels, from 1 to
100 kPa). This is consistent with the approximation that
ignores fluctuations being less accurate for shear stresses
than for isotropic ones.

More elaborate prediction methods for elastic moduli
were proposed. Kruyt and Rothenburg [37, 44] consid-
ered two-dimensional assemblies of non-rotating parti-
cles, and succeeded in applying a variational approach
such as the one we use for bulk modulus B to the eval-
uation of shear moduli as well. Velický and Caroli [43]
studied the case of an imperfect lattice system with con-
tact disorder, as in the experiments of [5] and the simu-
lations of [42]. Jenkins et al. [29] dealt with frictionless
sphere packings. More recently, La Ragione and Jenk-
ins [45] published an approximation scheme which is di-
rectly comparable to our simulation results, the results
of which are denoted as LRJ below.

Those estimation procedures improve upon the Voigt
assumption that relative displacements are ruled by the
average strain on considering small sets of displacements
and rotations, either associated to one grain, or to a con-
tacting pair. Those degrees of freedom are allowed to
fluctuate while their surroundings abide by the Voigt as-
sumption. Optimal values of the fluctuating variables
are then to be determined on solving the corresponding
system of equilibrium equations for the selected small
set of degrees of freedom. Such approaches necessarily
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involve complex treatments of the random geometry of
local grain arrangements, especially on attempting to ex-
press the predicted moduli with a limited amount of sta-
tistical data. In [46] we numerically check some of the
approximations involved, on exactly solving the required
set of local equilibrium problems. We show [46] that the
discrepancy between observed and predicted shear mod-
uli is reduced, down to 50% in the worst cases of C and
D samples under low pressures.

FIG. 5: (Color online) Ratio of estimated to measured values
of shear moduli, Gest/G, with Gest = GVoigt (larger values,
dots connected by dashed lines) and Gest = GLRJ (smaller
values, dots connected by solid lines), versus P or κ−1, in
sample series A (red), B (blue), C (black) and D (green).

Leaving aside the discussion of the various approxima-
tions involved in the derivation of the LRJ predictions
(some important steps of which are tested in [46]), we
now confront them with the numerical data.

We observe that the LRJ formulae do not improve
the predictions of bulk moduli over the Voigt and Reuss
bounds (28). Occasionally, they even predict values below

the lower bound. Yet, as shown on Fig. 5, the estimates
GLRJ obtained for shear moduli are much better than the
Voigt ones (27). Shear moduli in well-coordinated states
A and B are accurately predicted, while the discrepancy
in poorly coordinated systems C and D, from a factor of
three with the Voigt formula, are down to about 50%-
70% with the LRJ one under the lowest pressure levels.

LRJ formulae yield moduli that are proportional to
average contact stiffnesses (in which we introduced an
additional factor of Z(1/3), see Eqn. 19), with coefficients
involving rational functions of the backbone coordination
number z∗, and also the variance of the fluctuations in
the number of contacts of backbone grains. The LRJ
prediction still overestimates the shear modulus in poorly
coordinated systems, for which we now test another kind
of theoretical prediction.

V. THE CASE OF POORLY COORDINATED

NETWORKS

The specific elastic properties of configuration series C
and D, with their small coordination numbers, are rem-
iniscent of frictionless packings [8, 47], in which a sim-
ilar anomalous behavior of G as a function of pressure
has been reported. Here we review these properties of
packings with no tangential forces (Section VA), and we
discuss a possible explanation [48], and its applicability
to poorly coordinated frictional packings (Section VB).

A. Frictionless packings

Although samples of series A0 were confined with no
mobilization of friction, elastic moduli shown on Fig. 1
have been computed with tangential elasticity in the con-
tacts, just like, e.g. in Ref. [12]. It is assumed for state
A0 that friction is not mobilized in the preparation pro-
cess. In other words samples are perfectly annealed to
a local minimum of mechanical energy inconfiguration
space, but the response to some stress increment implies
tangential forces in the contacts. Results are of course
different if contacts are still regarded as frictionless on
evaluating elastic properties. Fig. 6 compares this new
set of values, which we denote as A00, to A0 ones. Bulk
moduli (Fig. 6(a)) are only slightly higher (about 10%
at low pressure) with tangential elasticity. A00 values
correspond to frictionless packings, in which a relation
between pressure P and the increase in solid fraction ∆Φ
above the rigidity threshold (i.e., above the value of Φ
in the limit of vanishing pressure) was obtained in paper
I [1, Eqn. 31], as a direct consequence of the isostaticity
property of the backbone. It is straightforward to check
that this relation, on taking the derivative with respect
to Φ and relating modulus B to P , yields the Reuss type
estimate of B, as expressed by (28) and (24), in which z
and Φ are replaced by their values in the limit of P → 0
(which does not significantly affect the result at low pres-
sure). Both approaches are based on the assumption that
forces vary proportionnaly to P , which is a particular
consequence of isostaticity, hence the exactness of the
Reuss estimate for A00 results. The distribution of force
values in sample series A0, once normalized by the ap-
plied pressure level, was checked in paper II [2] to remain
very nearly constant.
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The small influence of tangential elasticity on bulk
moduli, which is responsible for the difference in B val-
ues between A0 and A00 series, is not surprising, as both
the Voigt and the Reuss-like approaches, which restrict
the values of B to the interval given by (28), lead to the
assumption of vanishing tangential forces.

(a) Bulk modulus.

(b) Shear modulus.

FIG. 6: (Color online) Elastic moduli of samples A0 pre-
pared at different pressures without friction, computed with
(A0) and without (A00) tangential elasticity, A00 results cor-
responding to completely frictionless packings.

The shear modulus, on the other hand, as noted in
refs. [8, 47], is singular in frictionless packings under
isotropic stresses: while values of G in the A0 series
vary approximately proportionally to B, and are of the
same order, as observed above in Sec. IVA, shear moduli
of frictionless systems A00 (Fig. 6(b)) are considerably
smaller, and vary faster with P . This increase is very

well fitted by a power law with exponent 2/3, in agree-
ment with [47]. An explanation for the singular behavior
of G is suggested in [48, 49], as follows. First, some of
the pressure dependence of G is simply due to the influ-
ence of pressure on average contact stiffness 〈KN 〉. One
should therefore rather explain the pressure dependence
of G/〈KN〉. Then it is argued that this amplitude is
proportional to the degree of force indeterminacy, or to
z∗ − 6. More precisely, the shear modulus should scale
as the degree of force indeterminacy per unit volume, or
equivalently as (z∗ − 6)(1 − x0)Φ. This is the crucial
part of the argument. Leaving aside a discussion of its
justification (which would require detailed calculations
of sets of self-balanced contact forces and response func-
tions within the contact networks) we check here for its
practical validity. To do so, we define a reduced shear
modulus ga on dividing by (1 − x0)Φ and by 〈KN 〉. We
thus have, from (19),

ga =
Gz1/3

Ẽ2/3P 1/3Z(1/3)(1 − x0)Φ2/3
, (30)

and we test (Fig. 7) whether it varies linearly with z∗.
The final part of the demonstration of Ref. [48] (see

also [39]), suggests to evaluate the increase of coordina-
tion number with pressure on relating both quantities to
the increase in packing fraction above rigidity threshold
∆Φ. Such a relation between P and ∆Φ in isostatic fric-
tionless packings was written in [1], with P ∝ (∆Φ)3/2.
The additional ingredient is a scaling form of the incre-
ment of z∗ with ∆Φ:

z∗ − 6 ∝ ∆Φ1/2. (31)

A homogeneous shrinking approximation is suggested
in [48] to derive relation (31), based on the assumption
that the gap-dependent near neighbor coordination num-
ber z(h) grows like z(h) − 6 ∝ h0.5. However, as shown
in [1] we observed an exponent 0.6 instead, and our data
therefore do not confirm this argument.

Nevertheless, the proportionality of the singular ampli-
tude ga of the shear modulus to z∗−6 is accurately satis-
fied, as shown on Fig. 7. The linear fit of the dependence
of ga on z∗, through the 6 first data points, is very good
and predicts a vanishing modulus for z∗ = 5.994± 0.008.

B. Packings with intergranular friction

In paper I we concluded that frictional packings pre-
pared in low coordination states did not approach iso-
staticity under low pressure. However, one may test
whether the amplitude ga varies linearly with the degree
of force indeterminacy when it is small enough, even if
it does not approach zero. The Z states, on the other
hand (see Section III and paper I [1]), were prepared
with an infinite friction coefficient and have nearly van-
ishing force indeterminacy at low pressure. Fig. 8, in
which ga data for states C, D and Z are plotted versus
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FIG. 7: Reduced shear modulus ga, defined by (30), in
frictionless configurations A00 versus backbone coordination
number z∗. The straight line is the best linear fit through the
6 leftmost data points.

the corrected backbone coordination number z∗∗, which
determines the degree of hyperstaticity per degree of free-
dom by (22), shows that the linearity is very well sat-

FIG. 8: (Color online) Amplitude ga (Eqn. 30) versus z∗∗, as
defined in (22), in samples of types C (black), D (green) and
Z (5 lower data points, red). The dotted line is a linear fit to
the 4 lowest Z data points. The LRJ predictions are shown
for all three configuration series C, D, Z, as indicated (crosses
joined by dashed lines, same color code).

isfied for Z states. Z, C and D points lie approximately
on the same curve, showing that the macroscopic modu-
lus is controlled by z∗∗, in spite of the differences in the
structures of states C, D and Z. (Due to the greater mi-
cromechanical changes observed upon reducing the pres-
sure from its maximum value [2], the corresponding data
points for C and D states lie on a different curve, not
shown on the figure.) The linear fit still approximately
applies to the lowest values for D and C. As expected,

the linear fit predicts G = 0 for z∗∗ = 3.99± 0.02, i.e., a
shear modulus vanishing proportionnally to the degree of
force indeterminacy. Z configurations have a larger pop-
ulation of rattlers and divalent grains than C or D ones:
x0 ≃ 0.184 and x2 ≃ 0.068 at 1 kPa. Consequently,
on fitting ga versus z∗ instead of z∗∗, ga would appear
to vanish unambiguously below z∗ = 4, for the value
z∗ = 3.93 ± 0.02. The correction due to 2-coordinated
beads improves the accuracy of the result that G van-
ishes with H .

Fig. 8 also displays the values of amplitudes ga pre-
dicted by the LRJ formulae [45], as discussed in Sec-
tion IVC. As should normally be expected for such an
estimation procedure, based on the local equilibrium of
one pair of grains embedded in an elastic medium, the
LRJ approach is unable to capture the vanishing of shear
moduli in the limit of z∗∗ → 4 (i.e., h → 0), since the
rigidity properties of tenuous networks are determined by
more collective effects. The low level of force indetermi-
nacy provides a complementary approach to the estima-
tion schemes evoked in Section IVC to predict the values
of shear moduli in isotropically compressed packings.

We conclude therefore that the proximity of a state
devoid of force indeterminacy, however unreachable, ex-
plains the anomalously fast increase of the shear modulus
with the pressure for low coordination frictional pack-
ings, as observed on Figs. 1 and 2. As to the increase
of the degree of hyperstaticity, or of z∗∗, with pressure,
its prediction seems to be even more difficult than in the
frictionless case. What would be needed is an accurate
prediction of small changes in z∗, which, as observed in [2]
(paper II) the simple homogeneous shrinking assumption
does not provide, due, in particular, but not only, to its
inability to deal with the recruitment of rattlers by the
growing backbone.

The proximity of a “critical” value of the number of
contacts on the backbone also entails specific properties
of the eigenvalues of the stiffness matrix (the “density
of states” in the language of solid-state physics), with
a large excess of soft modes [47, 50]. A similar behav-
ior, both for the eigenmodes of the stiffness matrix and
for some shear elastic constant was observed in [30] in
2D simulations of anisotropic states. From this partic-
ular set of results in anisotropic packings and from the
Reuss approach to estimate the bulk modulus one may
deduce that the non-singularity of B, as opposed to G,
directly stems from the isotropic state of stress on which
load increments are applied. On increasing P , in a good
approximation (the better the lower the degree of force
indeterminacy), one just rescales the contact force values.
Load increments that are not proportional to the preex-
isting load, on the other hand, tend to produce large
fluctuations (see Fig. 4) and soft responses in poorly co-
ordinated contact networks.
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VI. COMPARISON WITH EXPERIMENTAL

RESULTS

The assembling procedures of states B and C (Sec. III)
can be regarded as idealized models for lubrication and
vibration. Jia and Mills [22, 24] measured sound wave
velocities in glass bead packings, some samples being
densified by repeated taps on the container, and oth-
ers mixed with a very small quantity of a lubricant (tri-
oleine). The beads were placed in a cylindrical container
and then compressed by a piston, transmitting a con-
fining pressure. Velocities of longitudinal and transverse
sound waves propagating in the vertical direction (or-
thogonal to the piston) were measured in the 70 kPa-
800 kPa range. Those velocities, which we denote as
usual as VP and VS , relate for an isotropic material to
bulk and shear moduli and mass density ρ as

VP =

√

B + 4
3G

ρ
and VS =

√

G

ρ
.

Fig. 9 displays the sound velocities in both types of sam-
ples, along with the results of Domenico [9], measured on
a glass bead sample in a higher pressure range. Within
the range of vertical pressure P investigated in the ex-
periments of [22], the packing fraction of dry beads varies
between 0.633 and 0.637, while lubricated ones are less
dense, Φ ranging between 0.613 and 0.617. Sound veloc-
ities are nevertheless larger in lubricated packings.

Comparisons with our numerical data, also shown on
Fig. 9, in spite of the differences in preparation proce-
dures (which are idealized, and involve somewhat arbi-
trary choices of parameters in simulations) and loading
(oedometric compression in experiments, isotropic com-
pression in simulations), reveal some interesting qual-
itative convergences and semi-quantitative agreements.
Specifically, we note that:

• Numerical “lubricated” samples B are also less
dense, but stiffer than numerical “vibrated” sam-
ples C.

• Sound velocities in B samples increase with P
slower than in C ones, and sound velocities in lu-
bricated laboratory samples increase slower than in
vibrated ones.

• Numerical C samples are better models for dry ex-
perimental packings assembled by vibration than
A ones: values of elastic moduli are in much better
agreement.

One may therefore attribute the difference in sound ve-
locities reported in [22] between dry and lubricated pack-
ings to a difference in coordination number, like in nu-
merical states B and C. (Such an interpretation differs
from the one set forth in [22], which relies on the filling
of open interstices by the lubricant).

The traditional numerical route to obtain dense sam-
ples, i.e. the use of a vanishing or low friction coef-
ficient as for systems A and B, fails to reproduce the
elastic properties of dense samples assembled by vibra-
tion. Those appear to be better simulated with the newly
introduced numerical procedure resulting in C samples,
which have a much lower coordination number for the
same density. Laboratory samples with a solid frac-
tion approaching the RCP value might well, especially
if their preparation involves vibrations or tapping, pos-
sess as small a density of force-carrying contacts as our
numerical samples of type C (z ≃ 4.05).

Such a conclusion, in favor of low-coordinated numeri-
cal samples as better models for experimental dense pack-
ings of dry beads than conventional, A-type ones, appears
to contradict the results of Makse et al. [8, 12]. Those au-
thors simulated what we denoted as the A0 sample series,
and reported good agreements with Domenico’s experi-
mental results [9] and with their own measurements. We
checked that the agreement between their numerical re-
sults and our A0 data was excellent. We attribute the
conflicting conclusions to their comparison being done in
a much higher pressure range than the one of Jia and
Mills’ experiments: as apparent on Fig. 9, the confining
pressures in Domenico’s experiments are all above 2 MPa.
Likewise, P values all exceed several MPa in the exper-
iments performed by Makse et al.. In this range, differ-
ences between A and C samples, as apparent on Fig. 9 for
sound velocities, as well as on [2, Fig. 2a] for coordination
numbers, tend to dwindle as P increases. The discrep-
ancy between numerical results on A-type systems and
experimental results on dry bead packings is much lower
under high pressure. Yet, numerical samples of type C
still fit the experimental data better. The apparent ex-
ponent in a power-law increase of sound velocities with
P , i.e. the slope on Fig. 9, is, in particular, better re-
produced by C data than by A ones. On discussing such
a high pressure range, one should nevertheless keep in
mind the possible occurrence of non-elastic behavior in
the contacts, as pointed out in [2] (paper II), where the
maximum stress levels in contact regions were estimated.

The fast increase of G as a function of P in C samples
is not observed in the experimental results of Jia and
Mills. Furthermore, using formula (23) (which assumes
isotropy), these results correspond to Poisson ratios (be-
tween 0.32 and 0.34), which are larger than numerical
results and do not vary with P . However, these data are
bound to be affected by stress anisotropy.

In this respect, a comparison of numerical results with
the data of Kuwano and Jardine [6] is easier, as those
were measured in glass bead samples under isotropic

stress states, from about 50 to 400 kPa. The sam-
ples of Kuwano and Jardine have similar densities to
D ones (Φ ≃ 0.59), and are initially made by “air plu-
viation”, i.e., deposited under gravity, in a controlled
procedure ensuring homogeneity. The values of shear
moduli are close to the numerical values for C and D
states, and vary with P even faster, as G ∝ P 0.55. The
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FIG. 9: (Color online) Sound velocities VP (upper data points) and VS (lower data points) versus confining pressure P on
double logarithmic plot for the experimental dry (vibrated) and lubricated samples of Jia and Mills, and of Domenico, to which
numerical values for simulated states A, B, C and D are compared.

power law fit through these data correspond to the line
marked “KJ” on Fig. 1(b). Kuwano and Jardine, combin-
ing static small-strain tests and sound velocity measure-
ments, could evaluate the 5 independent elastic moduli
of the transverse isotropic granular material assembled
under gravity. To compare our numerical results, ob-
tained in isotropically assembled systems, with theirs,
we ignored the moderate effect of the fabric anisotropy
on experimental elastic moduli and used, in Fig. 1(b),
the moduli corresponding to a shear strain in the ver-
tical plane, the shear modulus in the horizontal plane
being about 7% larger. Another similarity between our
results in D or C states and the data of [6] is the pres-
sure dependence of the two Poisson ratios νvh and νhh

which couple stress and strain components in 2 differ-
ent directions respectively defining vertical and horizon-
tal planes. Despite some scatter in the measured values
of these ratios, νvh and νhh show a marked decreasing
trend between P=80 kPa and P=400 kPa. Finally, we
compare the Young moduli mesured in [6] in vertical and
horizontal directions to our numerical values in states A
to D on Fig. 10. Our numerical values for Young mod-
ulus E∗ in systems with low coordination numbers are

FIG. 10: (Color online) Young modulus E∗ in numerical
samples A, A0, B, C, D, labelled with same colors and symbols
as on Fig. 9, as a function of P , compared to fits through data
points of Kuwano and Jardine (dotted lines, KJ) [6], with two
sets of values because of fabric anisotropy.
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similar to those results, but the pressure variation seems
faster (with exponent ∼ 0.6) in experiments.

We conclude therefore that, although more systematic
confrontations with experimental results are necessary,
some features of the moduli in low coordination numeri-
cal packings are apparently observed in the rather loose
glass bead samples of Kuwano and Jardine.

VII. ELASTIC RÉGIME

The elastic moduli express the relationship between
small stress and strain increments. We now wish to eval-
uate the elastic range, and to explore the origins of the
breakdown of elasticity for larger increments.

A. Limit of linear régime

Motivated by comparisons with experiments, we tested
the predictions of linear elasticity, as evaluated with the
moduli obtained from the stiffness matrix, versus the
full MD simulation for small and slowly applied load
increments, in the case of a triaxial axisymmetric com-

pression. This test, familiar in geomechanical engineer-
ing [51, 52, 53], consists in increasing one stress compo-
nent, say σ1, while the other 2 are kept constant at the
initial value of the isotropic pressure in the initial state:
σ2 = σ3 = P . More often, in the laboratory, one controls
strain component ǫ1 (called “axial strain”) with the mo-
tion of a piston, imposing a constant, slow strain rate ǫ̇1,
while the lateral stresses are maintained by the pressure
of a fluid surrounding the sample, which is wrapped in
an impervious membrane. It is customary to express the
results of such a test with two curves, representing, as
functions of axial strain, the deviator stress q = σ1 − σ3

and the volumetric strain ǫv = ǫ1 + ǫ2 + ǫ3, the initial
isotropic state being chosen as the origin of strains.

One should have in the quasistatic régime (small
enough ǫ̇1), within the linear elastic range, for small
enough ǫ,

q = E∗ǫ1

ǫv = (1 − 2ν∗)ǫ1,
(32)

where E∗ =
9BG

3B + G
and ν∗ (see Eqn. 23) are respec-

tively the Young modulus and the Poisson ratio of the
material in the initial state.

We simulated triaxial compressions for small axial
strains and compared the resulting deviator stress and
volumetric strain curves to (32). To minimize dynamical
effects in simulations of quasistatic behavior, the iner-
tia parameter I was kept below 10−4 or even 10−5 for
the most fragile, low pressure samples. (I is defined by

I = ǫ̇

√

m

aP
with m denoting the mass of one grain, see

papers I and II [1, 2]). Fig. 11 shows the typical results

of such a comparison in the case of one C sample, un-
der isotropic initial pressures P growing from 10 kPa to
1 MPa. This comparison first shows that full MD com-

(a) Deviator stress normalized by P = σ3 versus axial strain
ǫ1, for the five P values indicated.

(b) Volumetric strain −ǫv, showing contractance, versus
axial strain, same P values, growing according to arrow.

FIG. 11: Deviator stress (a) and volumetric strain (b) versus
axial strain in beginning of triaxial compression of a type C
sample. Dots show MD results of triaxial compression while
straight lines have slopes given by (32). The volumetric strain
is shown with an axis oriented downwards to better visualize
the decrease in sample volume, which contrasts with its dila-
tancy for larger strains.

putation results do admit, in excellent appproximation,
as slopes of the tangents to the curves at the origin, the
appropriate values deduced from the evalution of elas-
tic moduli by the stiffness matrix approach, as expressed
by (32). This confirms the statements made in Sec. II C,
and checked in Appendix A about the definition of elastic
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moduli: this definition makes sense as a very good ap-
proximation in spite of the slight directional dependence
of contact stiffness matrix K.

Values of ǫ1 for which the q(ǫ1) curve significantly de-
viates from its tangent at the origin increases from about
∼ 10−5 to ∼ 10−4 as P grows from 10 kPa to 1 MPa. This
linear elastic range limit, if expressed with stress ratio
q/σ3, shows but a slow increase with σ3 = P , starting
around q/σ3 ≃ 0.05. The initial slope of the volumet-
ric strain curve increases with pressure, in C samples, in
agreement with the results on Poisson ratios (Sec. IVA).
Deviations from the linear range of (32) appear a little
sooner, for ǫ1 slightly below 10−6 at 10 kPa, increasing
to a few times 10−5 at 1 MPa.

In the literature on sand properties [6, 15, 16], it is of-
ten observed that the approximately linear elastic range
about a prestressed reference state extends to strains of
order 10−6 or 10−5. On Fig. 12, we plotted the value
of ǫ1 for which the deviator stress starts to deviate from
(32) by more than 5%, versus the confining pressure, for
series A, C, and D. Recalling that most experimental re-

FIG. 12: (Color online) Threshold ǫelas1 above which q differs
from E∗ǫ1 by more than 5%, versus P , for series A (red), C
(black) and D (green). The dashed line has slope 2/3. Data
points corresponding to one sample series are connected by
thin dotted lines.

sults are collected in the range 50 kPa≤ P ≤ 1 MPa,
these data confirm the experimental observations [15]
on sands in terms of order of magnitudes for all three
sample series. However, they also witness a systematic
growth of the elastic threshold ǫelas1 with P , roughly as
P 2/3. This suggests a constant elastic deviator interval
relative to the confining pressure, qelas/P , on assuming
E ∝ P 1/3. Figs. 13 and 14 show that the elastic range
is better expressed in that form, as the threshold ratio
qelas/P displays much smaller variations as a function of
P : unlike Fig. 12, those graphs show stress intervals on a
linear scale. Expressing the extension of the linear elas-
tic régime in terms of strains, as done in the literature
on sands, allows one to gather the different sample series
within the same range of magnitudes around 10−5, pro-

FIG. 13: Stress ratio qelas/P above which q/E∗ differs from
ǫ1 by more than 5%, versus P , for series A.

vided the confining pressure stays within the interval that
is most often investigated in experiments. However, the
pressure dependence is better accounted for on express-
ing the upper limit of the linear elastic range in terms of
stress increments, relative to the confining stresses. The
trend in low-coordinated systems C and D is an increase

FIG. 14: (Color online) Stress ratio qelas/P above which q/E∗

differs from ǫ1 by more than 5%, versus P , for series C (black,
lower data points) and D (green).

of the linear elastic interval, expressed as a stress ratio,
with P . At the lowest pressure, the smallness of this in-
terval (typically about 10−3 for ratio q/P in D samples
under P = 1 kPa) is characteristic of the greater fragility
of tenuous networks, a phenomenon, once again, remi-
niscent of the situation of nearly isostatic force-carrying
structures in frictionless packings under low pressure. In
the limit of rigid grains, frictionless systems (if their prop-
erties do not qualitatively depend on space dimension)
should behave as described in [54]: in packings of rigid
disks the deviator stress increments causing exactly iso-
static 2D contact networks to fail and rearrange were
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FIG. 15: (Color online) Deviator stress (black, left axis)
and volumetric strain (red, right axis) versus axial strain in
triaxial compression for small strains, with unloading curves,
in a D sample initially under P=100 kPa. The blue dotted
curves show the results of a calculation with the sole contacts
that are initially present.

found to approach zero as an inverse power of the num-
ber of particles in the limit of large systems.

Series A configurations, on the other hand, have de-
creasing linear elastic intervals as a function of pressure.
This is due to the increase of friction mobilization, which
leads to larger non-elastic terms in the response to load
increments.

B. Onset of irreversibility

So far we have been testing the accuracy of linear elas-
ticity, i.e., the predictions of (32) with the initial mod-
uli. It is known from experiments that granular mate-
rials cease to be elastic outside this linear régime. This
may be checked on testing for reversibility in a strain
cycle. The effects of unloading from various points on
the triaxial compression curve are shown on Fig. 15, in
a type D sample with σ2 = σ3 = 100 kPa. On revers-
ing the sign of ǫ̇1, while still maintaining constant lat-
eral stresses σ2 = σ3, one observes that the unloading
curve starts with a slope close to the initial slope of the
loading curve. This common slope is the elastic mod-
uli corresponding to the linear response for very small
strain increments. Consequently, the response to a devi-
ator stress is no longer reversible as soon as it ceases to
be linear, as shown on Fig. 15, on which the axial strain
that results from a deviator stress cycle is represented. A
large proportion of the strain entailed by a relative stress

FIG. 16: Isotropic pressure increase versus relative volume
change in pressure cycle, P growing from 10 to 20 kPa in C
samples, and then decreasing back to 10 kPa.

increase of order 10−1 is not recovered on returning to the
initial load. The response to an isotropic load increment
is much closer to reversibility, even for much larger stress
variations, as shown on Fig. 16, which displays the stress-
strain curve in an isotropic pressure cycle. As P varies by
a factor of 2, about 93% of the volume increase is recov-
erable upon unloading to the initial pressure. Only for
the large pressure cycles as studied in paper II [2, Fig. 2]
can one observe notable irreversible changes, in coordina-
tion number rather than in density. One thus finds again
that the response to increments in load intensity (here:
isotropic compression) strongly differs from the response
to changes in load direction (here: deviator stress).

C. Origins of nonlinearity and irreversibility

For deviatoric stress increments, the gradual onset of
irreversibility, as the applied load variation increases, co-
incides with the breakdown of linearity. The lack of re-
versibility, as shown on Fig. 15, has two different origins.
One is the mobilization of friction, and the second is the
failure of the contact network: the packing eventually
breaks apart and rearranges. In order to detect the oc-
currence of this latter kind of event, one may compute
the response in the beginning of a triaxial compression
of some samples with MD calculations in which only the
initially present contacts, in the isotropic state, are taken
into account. One thus tests the ability of the initial con-
tact network to support different stress values. One then
observes, as shown on Fig. 15, that the initial contact net-
work proves unable to support a deviator stress beyond
a certain limit: the q versus ǫ1 curve reaches a maximum
if ǫ̇1 is controlled. This witnesses the propensity of the
packing to become unstable and gain kinetic energy be-
fore it finds a new contact network that is able to support
a larger deviator. This happens the sooner the larger the
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FIG. 17: (Color online) Analog of Fig. 15 in a sample of type
A. Note the different scales.

stiffness parameter κ in systems with low coordination
numbers. Thus the corresponding ratio q/σ3 decreases
from about 0.2 in the example of Fig. 15, corresponding
to one D-type sample under 100 kPa, to, typically, 0.1 un-
der 3 kPa, and 0.05 under 1 kPa. In this respect (as for
the values and pressure dependence of shear moduli) low
coordination frictional packings exhibit, in a weakened
form, similar singular behaviors to frictionless ones. The
opposite behavior is that of A-type packings, with a very
large coordination number. As shown on Fig. 17, the ir-
reversibilities are smaller and the initial contact network
proves able to withstand considerably larger relative de-
viator stresses, q/σ3 ∼ 1.1 under 100 kPa. The behavior
of A packings under shear is therefore somewhat inter-
mediate between that of low coordination systems C or
D under not too low confining stress, and the response
to isotropic pressure increases. The behavior of A sam-
ples under triaxial compression is to a large extent de-
termined by the response of the initial contact network,
and the rise of deviator q as a function of axial strain is
very fast. This is a typical feature of well-coordinated
packings, as studied in [55]. In Refs. [55] and [56], two
different types of strain are distinguished: those due to
the deformability of contacts, and those stemming from
network failures and rearrangements. As long as the first
type of strains is the only one present, the behavior is
close to that of the inital contact network. Beyond the
stability range of the initial contact network, the effect of
rearrangements dominate [56], and strains are produced
by local instabilities which can be described with a rigid
grain model [57].

Refs. [56, 58] show that well-coordinated isotropic

packings (2D analogs of A systems) can support rather
large deviator stress increments in the κ → ∞ limit,
whatever the sample size. Systems with lower coordi-
nation numbers appear to exhibit intermediate behav-
iors between this one and the “fragility”, defined as the
propensity to rearrange for arbitrary small stress incre-
ments in the large system limit [32, 54, 56, 59], of as-
semblies of rigid, frictionless grains. The stability range
of given equilibrium contact networks extends to smaller
stress increment intervals in C or D-like packings, but
we expect it to remain finite for arbitrary low pressure
levels. These properties, and the distinction of two types
of strains, are further explored and discussed in a forth-
coming paper [60].

VIII. CONCLUSIONS AND PERSPECTIVES

Our numerical results can be summarized as follows.
Elastic moduli of granular packings are primarily sen-

sitive to the stress level, via the average contact stiffness,
which is proportional to P 1/3(zΦ)−1/3 under pressure P .
Once this effect is taken into account, important differ-
ences remain between the elastic properties of different
packing structures, and systems assembled with the same
density might exhibit large variations in their moduli,
since those are essentially related to coordination num-
bers. Under isotropic pressures, one should distinguish
between bulk and shear moduli. The bulk modulus, in
all studied configurations, is efficiently evaluated by the
Voigt and Reuss-like bounds, with an error smaller than
20%. In general, we expect a difference between the re-
sponses to changes in load intensity on the one hand,
and to changes in stress direction on the other hand. In
isotropic systems, the latter correspond to purely devi-
atoric stresses, the effect of which differs the most from
that of hydrostatic pressure increments in low coordina-
tion contact networks. In such cases shear moduli are
anomalously small and increase faster with the confining
pressure. In well coordinated states, such as A and B,
satisfactory estimates of B and G moduli are obtained on
using improvements of the Voigt approximation, based on
locally independent fluctuations about average strains,
such as the La Ragione-Jenkins (LRJ) approach. More-
over, the additional stiffening effect of the increase in co-
ordination number, due to compression, might, for pres-
sures in the MPa range, be reasonably predicted with
the homogeneous shrinking assumption, or similar refine-
ments thereof. Such schemes nevertheless require rather
detailed statistical knowledge of local particle configura-
tions. On the other hand, the shear response of low coor-
dination packings, such as C and D, is better described
with reference to a state with no force indeterminacy,
even though such a state is not closely approached in the
limit of low pressures (or large stiffness level, κ → +∞)
except for unphysically large friction coefficients (as in
the Z configuration series). In the rigid, κ → +∞ limit,
shear moduli become proportional to the level of force
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indeterminacy, which directly relates to z∗ − 4, with a
small correction due to divalent particles (hence the def-
inition and use of z∗∗). The dependence of z∗ − 4 on
pressure seems however difficult to predict with the nec-
essary accuracy [2]. The physical origin of the breakdown
of linear elasticity beyond an interval of very small strains
depends on z∗ as well. Linear elasticity fails considerably
later, in terms of relative stress increments, for isotropic
pressure changes, and, to a lesser extent, in high coordi-
nation packings subjected to deviatoric stress paths. In
such cases linear elasticity breaks down because of fric-
tional forces. Elasticity ceases to apply for very small
shear stress increments in low coordination systems, the
smaller the closer they are to packings devoid of force
indeterminacy. In such cases the main physical origin
of nonelastic response is network fragility, as the contact
structure breaks apart in response to stress increments.
Extension of linear elastic régimes observed in numeri-
cal simulations agree semi-quantitatively with observa-
tions on sands. The shape of the stress-strain curves
beyond the elastic range correlates with the coordination
number, with a much stiffer response in well coordinated
packings. On comparing numerical and experimental re-
sults, the low pressure régime of poorly coordinated net-
works corresponds to the lowest pressures for which lab-
oratory results are available. The characteristic features
of this régime, such as G increasing with P faster than B,
or VS faster than VP , as apparent in C and D numerical
configuration series, are not observed in the experimen-
tal data of Jia and Mills [22, 24] on dense samples. Yet
some other measurements made by Kuwano and Jardine
on looser sphere packings [6] show similar trends to C
and D-state simulations.

The variety of observations corresponding to the same
pressure and density values for the same material con-
firms the sensitivity of elastic moduli to otherwise un-
detectable differences in inner structures. It seems in
particular, although information about the full stress
tensor in the measurements of [22, 24] is lacking, that
packings densified by vibrations or repeated shakes have
a smaller coordination number than lubricated ones, in
spite of a possibly larger density. Additional experimen-
tal results with more detailed information on stresses and
anisotropy of elastic moduli in packings assembled by dif-
ferent procedures, as well as simulations of anisotropic
packings, could enable more quantitative comparisons.

Based on those results, several interesting perspectives
should be pursued in the near future.

On the theoretical side, it seems promising to study
how granular packings, within and outside the elastic
range, deform and destabilize, in more microscopic de-
tail. Basically, packings with few contacts are closer to
failure, and some of their anomalies in elastic proper-
ties correlate with failure mechanisms. Amorphous sys-
tems made of model atoms or molecules at zero temper-
ature have been characterized, in this respect, in terms
of an intrinsic scale [61, 62], and elementary plastic re-
arrangement events, the spatial structure of which is

similar to that of nonaffine elastic displacements, have
been investigated [63]. Granular materials have friction,
which requires more sophisticated stability analyses of
given contact networks [56, 64, 65, 66], interact with
much stiffer force laws, and exhibit characteristic dila-
tancy properties and fabric evolutions under strain. It
is worth investigating in greater detail the possible simi-
larities and differences between their quasistatic rheology
and the plasticity of amorphous materials. A character-
istic length scale, which diverges in the isostatic limit,
has also been invoked in relation with the singular elas-
tic properties of frictionless packings [50]. It should be
examined whether such a length plays a role in nonelastic
deformation behaviors, and similar investigations should
be carried out in systems with friction, which also exhibit
complex, long-range correlated strain fields [67].

More practical issues which deserve investigations are
how elastic moduli, which can be measured in equi-
librated packings under varying stresses [17], can be
used to infer useful information on their inner structure,
which, in turn, can be exploited to predict their behavior
under larger disturbances. As an example, the coordina-
tion number of an isotropic packing, if it is large, will re-
sult in a stiff response to deviator stress increments, char-
acteristic of a stable contact network, and a faster mobi-
lization of internal (macroscopic) friction as a function of
strain (see Fig. 17 and Ref. [55]). Numerical simulations
of anisotropic stress and fabric states, of stress paths and
large strains, and further numerically based correlations
between elastic properties and stresses, strains and inner
structures are of course necessary. Finally, the geometry
of polydisperse and non-spherical particles should also be
explored. Such packings might have large populations of
rattlers, some more collective stable floppy modes than
in the case of spheres [68], and different mechanical prop-
erties [69].

APPENDIX A: TANGENTIAL ELASTICITY AND

FRICTION

We investigate here the effect on elastic moduli of the
corrections to the contact law advocated in [70] that we
use in our simulations, and we also discuss the possible
effects of more sophisticated models, in which the par-
tial mobilization of friction and the presence of a sliding
region within the contact area [35, 71] is taken into ac-
count.

Strictly speaking, those terms preclude the definition
of a perfectly elastic response, which should be reversible
and involve a uniquely defined stiffness matrix.

The simplified law we adopt involves a tangential stiff-
ness KT depending on the normal deflection h, but in-
dependent of the current mobilization of friction. This
is the same approximation as used in [8, 12]: the value
of KT is the correct one in the absence of elastic relative
tangential displacement, when T = 0.

The rescaling of KT we chose to apply in situations of
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decreasing normal force N , in order to avoid energetic
inconsistencies, as explained in paper I [1], means that
the contact stiffness matrix, as defined in Section II B,
should then be written differently. Its block correspond-
ing to contact i, j is not given by KE

ij
, as written in (6),

but takes another form KR

ij
for a receding pair of grains.

Since KT /KN is constant, and KN ∝ N1/3, one has, with
nij and Tij/||Tij || as first and second basis vectors,

KR

ij
=









KN(hij) 0 0
||Tij||

3Nij

KN(hij) KT (hij) 0

0 0 KT (hij)









. (A1)

The non-diagonal element of (A1) is smaller than
µKN (h)/3 (KN/10 for µ = 0.3), and its effects are likely
limited if friction is not too strongly mobilized, as should
be the case under isotropic loads. Let us denote as ∆K

the correction to the symmetric form of stiffness matrix

K
(1) ≃ K (see Section II B), in which Eqn. (6) is applied

to all contacts, due to this treatment of decreasing nor-
mal forces. We solved the linear system of equations (13),
with loads corresponding to different global stress incre-
ments, to first order in the perturbation ∆K:

U ≃ U
(0) + ∆U,

where U
(0) is the solution to the unperturbed problem,

U
(0) = K

−1 ·Fext, and ∆U is the correction:

∆U = −K
−1 · ∆K ·U(0). (A2)

In (A2) one should pay attention to the directional de-
pendence of ∆K (according to whether h increases or de-
creases). The first-order correction is therefore not lin-
ear, but depends linearly on the amplitude of the load
increment with a coefficient depending on its direction.
We evaluated the resulting correction to the compliance
in the cases of uniaxial (e.g., ∆σ1 > 0 or ∆σ1 < 0
while ∆σ2 = ∆σ3 = 0), isotropic (positive or negative
value of ∆σ1 = ∆σ2 = ∆σ3) and purely deviatoric (e.g.,
∆σ1 = −∆σ2 and ∆σ3 = 0) stress increments. Rela-
tive corrections never exceeded 1%, the largest ones, as
expected, being observed for an isotropic pressure reduc-

tion (which tends to reduce normal contact forces).
Our contact model also introduces an approximation,

which we now discuss. As opposed to more sophisticated
implementations of the contact law, as used by some au-
thors [10, 36], our model does not keep track of the local
slip distribution within the contact region. The maxi-

mum effect of such slip is to reduce the tangential stiff-
ness from KT (N) to

K ′
T (N,T) = KT (N)(1 − ||T||

µN
)1/3. (A3)

in the “loading” direction (i.e., tending to increase
||T||/N), and for the tangential relative displacements

along T. The possible influence on the simulated elastic
properties of our overestimating the tangential stiffness
of the contacts was assessed as follows. We computed the
elastic moduli for the equilibrated configurations, keep-
ing the same values of contacts forces, using formula A3
for all contacts, in both tangential directions. (Such a
calculation thus implicitly assumes that the equilibrium
force distribution is not affected by the change in the con-
tact law). This procedure exaggerates the effects of slip
and gradual friction mobilization: formula A3 gives the
lowest possible value for KT and only applies in specific
loading histories, and for stress increments that tend to

increase ||T||
N . We found that the relative corrections to

computed elastic moduli evaluated with this procedure
never exceed 3%.

Consequently, it is a very good approximation to re-
place the contact stiffness matrix K by its diagonal form
given by Eqn. (6), provided friction is not fully mobilized
in any contact.

If condition ||T|| = µN is reached in contact i, j, then
matrix K

ij
has to be written as follows. With the same

choice of basis vectors as for (A1), K
ij

has a “loading”

form KL

ij
given by

KL

ij
=





KN (hij) 0 0
µKN (hij) 0 0

0 0 KT (hij)



 (A4)

and an “unloading” one equal to KE

ij
or to KR

ij
, depend-

ing on whether δuN is increasing or decreasing. If it is
increasing, the loading form KL

ij
should be used if

KT (hij)δu
T
ij ·

Tij

||Tij ||
− µKN(hij)δu

N
ij > 0.

If δuN is decreasing, this condition becomes

KT (hij)δu
T
ij ·

Tij

||Tij ||
+

[ ||Tij ||
3Nij

− µ

]

KN(hij)δu
N
ij > 0.

Note that KL

ij
is a non-symmetric singular matrix of rank

2. As remarked in Section II C, well-equilibrated config-
urations prepared by molecular dynamics do not contain
any contact where the condition ||T|| = µN is exactly

reached. This justifies our using the diagonal form KE

ij

of the local stiffness matrix block pertaining to any con-
tact. Full mobilization of friction occurs under small load
increments, and the resulting deviation from elastic be-
havior is investigated in Section VII.

APPENDIX B: GEOMETRIC STIFFNESS

MATRIX AND TREATMENT OF DIVALENT

BEADS

The geometric term added to the change in intergran-
ular forces entailed by small displacements and rotations
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was evaluated in paper I [1]. Here, for completeness,
we write down its contribution to the geometric stiffness

matrix K
(2). Those terms stem from the change in the

direction of previous contact forces. They were carefully
evaluated in general situations of particles of arbitrary
shapes by Kuhn and Chang [64], and by Bagi [65]. This
results in formulae of considerable complexity, involving
“branch vectors”, joining contact points to particle cen-
ters where moments are evaluated, as well as particle
surface curvatures, which determine the small changes in
normal directions caused by particle displacements and
rotations. Those results assume much simpler forms in
the case of spherical grains, for which both branch vec-
tors and radii of curvatures are given by particle radii,
and our results agree with such particular forms of the
general expressions of Refs. [64, 65].

In the matrix block Our results agree with the general
expressions written down in those references, but radii of
sphere i is simply denoted as Ri below (in our numerical
computations, all Ri values are equal to a/2).

The 6 × 6 block K
(2)

ii
of the geometric stiffness matrix

is a sum over the contacts of grain i,

K
(2)

ii
=
∑

j 6=i

L
ij

,

each term being given by the expressions written in paper
I [1, appendix B]. Using a system of coordinates with nij

and Tij setting the orientations of the two first axes, one
has:

L
ij

=







































0
Tij

rij
0 0 0 0

0 −Nij

rij
0 0 0 0

0 0 −Nij

rij

Tij

2
0 0

0 0 0 0 0 0

0 0
NijRi

rij
−RiTij

2
0 0

0 −NijRi

rij
0 0 0 0







































(B1)

As to the non-diagonal block K
(2)

ij
, it is obtained from

L
ij

on reversing the signs of the coefficients in the three

first columns. Matrix K
(2) is therefore clearly not sym-

metric, which, in principle, forbids the definition of an
elastic energy. However, each term involving Nij or Tij

in K
(2) is negligible once compared to its counterpart in

K
(1), where forces are replaced by terms of order KNa.

Generally, K
(2) terms are therefore of relative order κ−1

if compared to the corresponding ones in K
(1). Thus

the geometric stiffness matrix only plays a role for those
directions of displacement vectors belonging to the null

space of K
(1). This is important for frictionless grains, in

which case such floppy modes of the constitutive matrix

are necessarily unstable for spheres, but not so for, e.g.,
ellipsoids [32, 68]. In the case of frictional spheres we
did not obtain any floppy mode on the backbone, except
for beads with two contacts. However, the correspond-
ing free motion was shown to create no instability [1]. In
order to work with a positive definite stiffness matrix, as
rendered necessary by numerical techniques like Cholesky
factorizations or conjugate gradient iterations, a stiffness
term is added which associates an elastic energy with the
free motion of divalent beads (the same trick is used to
impede the global translations of all grains as one rigid
body). Those particles consequently have no rotation in
the direction defined by their two contact points, and the
solution of the system of linear equations defined by (13)
is unique.

With this precaution we can therefore safely neglect
the geometric stiffness matrix in all cases studied in the
present numerical work.

APPENDIX C: ELASTICITY OF A

PRESTRESSED SYSTEM

We recall some basic properties which lead to a distinc-
tion to be made, whenever the reference configuration of
an elastic continuum is prestressed, between the elastic
moduli and the coefficients of the linear relation between
the Cauchy stress tensor and the strains. We specify
here which type of elastic coefficients we compute in sim-
ulations. Then, we also point out that some small cor-
rections –negligible in practice – should in principle be
applied to the computed moduli, because of preexisting
stresses.

Let us consider a uniform displacement gradient ∇u

within an elastic continuous medium (derivatives with
respect to coordinates on the reference, undisturbed con-
figuration). In linear elasticity, the free energy density,
A/Ω0, evaluated in a reference configuration (with vol-
ume Ω0), is a quadratic function of the Green-Lagrange
strain tensor e, which expresses material deformation [1].
The first-order term is written with the Piola-Kirchoff
stress tensor π

0
[72] in the reference configuration:

P = Ω0π0
: e. (C1)

To second order, the free energy associated with small
strains involves the tensor of elastic constants C:

A = Ω0

[

π
0

: e +
1

2
e : C : e

]

. (C2)

Elastic moduli thus appear in the increment of π:

π − π
0

= C : e. (C3)

The Voigt symmetry Cαβγδ = Cγδαβ is satisfied by
the coefficients of this linear law because they are sec-
ond order derivatives. Let L denote the diagonal ma-
trix containing the cell dimensions along the three axes,
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and L
0

its value in the reference configuration, corre-
sponding volumes being Ω and Ω0. With the notation
F = 1 + ∇u = L · L−1

0
one has Ω/Ω0 = detF for the

dilation and σ is related to π by

π = (detF)F−1 · σ · T
F

−1. (C4)

(This relation between the Piola-Kirchoff stress tensor
and the Cauchy stress tensor can be found in continuum
mechanics textbooks [72] and was recalled in paper I).

Let us now use (C3) and (C4) to write the increment
of the Cauchy stress tensor to first order in displacement
gradient ∇u (needless to distinguish spatial derivatives
in the reference or the deformed configuration at this
stage, as this would introduce second order corrections).
Defining the linearized strain tensor ǫ as

ǫ = −1

2

(

∇u + T∇u
)

,

one obtains:

σ = π
0
−
(

trǫ
)

π
0
−∇u · π

0
− π

0
· T∇u + C : ǫ. (C5)

Therefore, σ is not necessarily a function of the symmet-
ric part of ∇u only. A rigid rotation (for which ∇u is
antisymmetric) might produce a Cauchy stress increment
if π

0
and ∇u do not commute. Likewise, the coefficients

expressing the linear dependence of σ on ∇u do not al-
ways satisfy the Voigt symmetry, and hence one cannot
regard a constant σ as deriving from a potential energy
of external loading. Both conditions, symmetry and de-
pendence on ǫ only, are however restored if one restricts
to symmetric displacement gradients, or if π and ǫ share
common principal directions. This is always the case
with our choice of boundary conditions, or in general if
π

0
= P1 is an isotropic tensor. In this latter case, (C5)

relates σ to ǫ, assuming isotropy of the material, with a
tensor of “apparent” elastic moduli B, that has the same

symmetries as C. C, in isotropic systems, can be writ-

ten with a bulk modulus B and a shear modulus G. On
relating σ to ǫ, the apparent moduli (as measured in an
experiment) are B + P/3 and G − P .

It should be specified that our procedure to compute
elastic moduli in isotropic sphere packings is based on
a formula for the Cauchy stress tensor. Therefore, the
resulting moduli are the elements of matrix B, rather

than C.

As a consequence of the stress and forces that pre-
exist in the initial configuration before elastic response
is probed, our results should also in principle be slightly
modified. As we use it, the equilibrium equation for stress
components actually gives the increment of the product
Ωσα, from which the contribution ∆Ωσ0

α, due to volume
change ∆Ω = −Ω0trǫ should be subtracted before divid-
ing by Ω0 if the Cauchy stress variation is to be obtained.
As a consequence of this correction, we should add P/3 to
the value of B obtained with our calculation procedure.

This is a very small effect, which we have been neglecting
(moduli are in MPa for stresses in kPa, see Fig. 1).

APPENDIX D: VOIGT AND REUSS BOUNDS

FOR ELASTIC MODULI IN A SPHERE

PACKING

Within the approximation that the stiffness matrix
does not depend on the direction of the stress (or strain)
increment, and is symmetric (see Section II C and Ap-
pendix A), which fortunately proves accurate (see also
Section VII), the elastic régime can be defined, and the
variational properties (15) and (16) can be used. Vari-
ational properties leading to bounds for moduli are sel-
dom invoked in the context of granular materials. Our
purpose here is to recall how these useful properties are
established and interrelated, and how they can be ex-
ploited.

Let us first briefly establish the minimization property
for contact force increments, which is less familiar than
the simple minimization of elastic energy (15). We con-
sider the solution ∆f

∗ to the problem of minimizing (16)
among contact force increment vectors that balance the
applied load increment, i.e. such that

T
G · ∆f = ∆F

ext (D1)

This solution is characterized by the existence of a vector
x of Lagrange multipliers such that

K−1 · ∆f
∗ = G · x,

and (D1) thus entails

T
G · K ·G · x = K · x = ∆F

ext,

This means that x is the displacement vector solution to
the elastic problem, and that ∆f

∗ = K · G · x is indeed
the corresponding contact force increment vector.

We now derive the explicit formulae for Voigt and
Reuss bounds.

A first step is to exploit the isotropy of the medium,
which enables inequalities to be written separately for
bulk and shear moduli. In our stress-controlled approach,
∆σ is imposed, minimum values in (15) and (16) are

W ∗
1 = −Ω0

2
∆σ : C−1 : ∆σ

W ∗
2 = −W ∗

1

The values obtained with trial solutions for displacements
or contact force increments can then be regarded as es-
timates of those quadratic expressions in ∆σ, and hence
provide estimates of the corresponding compliance ma-
trix C

−1. The meaning of C
−1, in a finite sample, is

specific to the choice of particular boundary conditions.
In the large sample limit, it is assumed to satisfy the
symmetry properties of the medium, which is statisti-
cally isotropic in the numerical studies reported here.
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Moreover, it is also expected to approach the macro-
scopic compliance matrix, whatever the particular choice
of boundary conditions. If, as in our numerical study, we
restrict ∆σ to a diagonal form, and hence regard it as a

vector with three coordinates σα, α = 1, 2, 3, C
−1 is a

matrix S of the form

S =





S11 S12 S12

S12 S11 S12

S12 S12 S11



 , (D2)

with, due to isotropy,

S11 =
1

9B
+

1

3G

S12 =
1

9B
− 1

6G
.

When ∆σ is an isotropic pressure increment ∆P , one
has

W ∗
2 = −W ∗

1 =
Ω0(∆P )2

3B
,

whence an upper bound to B with an estimate of W ∗
1 ,

and a lower bound with an estimate of W ∗
2 .

When ∆σ is of the form (q,−q, 0), then

W ∗
2 = −W ∗

1 =
Ω0q

2

2G
, (D3)

whence an upper bound to G with an estimate of W ∗
1 ,

and a lower bound with an estimate of W ∗
2 .

The Voigt bounds on B and G are based on trial dis-
placements defined as (see Eqn. 8)

U = ((0,0)1≤i≤n, (ǫα)1≤α≤3) (D4)

The choice of ǫ should then minimize (15), restricted to
displacements of this particular form, i.e.,

W1(~ǫ) =
Ω0

2
~ǫ · L · ~ǫ − Ω0~σ · ~ǫ,

in which the 3-vector notations for strains and stress in-
crements as defined above are adopted, and 3× 3 matrix
L is a sum over contacts, to be evaluated below. The
best choice for ~ǫ is

~ǫ∗ = L
−1 · ~σ

The minimum value of W1 then yields

S
Voigt = L

−1. (D5)

Let us now write down matrix L in a sphere packing with
our boundary conditions. We introduce the notations

LN
ij = (Ri + Rj)

2KN
ij

LT
ij = (Ri + Rj)

2KN
ij

for each contact i, j between spheres of radii Ri and Rj ,
and neglect hij in comparison with the radii, as we have
been doing throughout this article. Then one has, for
each pair of indices α, β, 1 ≤ α, β ≤ 3 (no sum over
repeated indices)

Lαβ =
1

Ω0

∑

i<j

[

LN
ij (n

α
ij)

2(nβ
ij)

2 + LT
ij(δαβ − nα

ijn
β
ij)n

α
ijn

β
ij

]

(D6)
In (D6), δαβ is the Kronecker symbol and index pairs
i < j run over the list of force-carrying contacts between
grains labelled i and j.

In general, it might be favorable to allow for a com-
mon spin, i.e., ∆θi = ~ω, for all particles in the choice
trial displacements (D4). The optimal choice ~ω∗ only
vanishes when the stress tensor and the fabric tensor de-
fined as the average of nij ⊗ nij over contacts, weighted
by LT

ij , share the same eigenvectors. This conclusion,wich
was reached before by Jenkins and La Ragione [73], and
independently by Gay and da Silveira [74], on directly
estimating the stress increments corresponding to a pre-
scribed strain, is retrieved here as an illustration of the
variational approach.

Returning now to the case of isotropic packings of
monodisperse spherical beads of diameter a, the fabric
tensor is isotropic, which ensures ~ω∗. Thus matrix L is
the Voigt estimate of C. To compute its terms in the
large system limit for isotropic packings, we transform
the sums in (D6) as we did for the evaluation of average
stiffness by (19). Exploiting the independence between
stiffness fluctuations and contact orientations, as well as
relations

〈n4
x〉 =

1

5
and 〈n2

xn2
y〉 =

1

15

for isotropically distributed unit vectors, one gets

CVoigt
11 =

34/3

2

(

zΦẼ

π

)2/3
3 + 2αT

15
Z(1/3)P 1/3

CVoigt
12 =

34/3

2

(

zΦẼ

π

)2/3
1 − αT

15
Z(1/3)P 1/3,

from which expression (27) of BVoigt and GVoigt is readily
derived, since B = (C11+2C12)/3 and G = (C11−C12)/2.

Finally, to establish the Reuss lower bound for B, we
choose an isotropic stress increment ∆~σ = (∆P, ∆P, ∆P )
and evaluate W2 for a trial set of contact force increments
chosen, in any sample in equilibrium under pressure P ,
as

∆fij =
∆P

P
fij , (D7)

in contact i, j, initially carrying force fij . Such force in-
crements balance the load increase ∆P by linearity of
equilibrium relation (D1). The resulting value of W2,

W2 =

(

∆P

P

)2
1

2Ω0

∑

i<j

N2
ij

KN
ij

+
T

2
ij

KT
ij
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is quadratic in ∆P , and yields BReuss, as written in (28),
on identifying the optimal W2 value with the macroscopic
energy:

W ∗
2 =

Ω0(∆P )2

3B
,

once the sum is transformed by the same procedures as
in the evaluation of the average stiffness 〈KN 〉 in (19),

using the definition of Z̃(5/3) in (18).
No such trial vector of contact force increments as (D7)

is readily available when the applied stress increment
is not proportional to the preexisting stress, which is
isotropic in the present study. In general, in anisotropic
stress states, a similar Reuss-type approach is expected
to provide a lower bound estimate for a certain combi-
nation of elastic moduli, which expresses the response to
proportional load increases.

Finally, let us recall that similar minimization prop-
erties as (15) and (16) hold in a strain-controlled ap-

proach. If strains ǫ are imposed, then displacement vec-
tor U, which is constrained to correspond to ǫ (this sets
the values of its three last coordinates with our choice of
boundary conditions) should minimize:

E1(U) =
1

2
U ·K · U

while the contact force increments, vector ∆f , should
equilibrate each grain and minimize

E2(∆f) =
1

2
∆f · K−1 · ∆f − Ω∆σ : ǫ,

in which the stress increment ∆σ is directly given by ∆f ,
just like stress components relate to contact forces in (1).

It is easy to check that the strain-controlled approach
yields exactly the same Voigt and Reuss bounds as the
stress-controlled one.
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38, 23 (1988).
[19] Y.-C. Chen, I. Ishibashi, and J. T. Jenkins, Géotechnique
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