

June 2010

NASA/CR–2010-216710

Model-Checking with Edge-Valued Decision
Diagrams

Pierre Roux
E´cole Normale Suprieure de Lyon, France

Radu I. Siminiceanu
National Institute of Aerospace, Hampton, Virginia

https://ntrs.nasa.gov/search.jsp?R=20100024139 2019-08-30T09:49:39+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10554327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

 Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 443-757-5803

• Phone the NASA STI Help Desk at

443-757-5802

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Cooperative Agreement NNX08AC59A

June 2010

NASA/CR–2010-216710

Model-Checking with Edge-Valued Decision
Diagrams

Pierre Roux
E´cole Normale Suprieure de Lyon, France

Radu I. Siminiceanu
National Institute of Aerospace, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Acknowledgments

This work has been supported by NASA Cooperative Agreement NNX08AC59A,
subagreement number 27-001310.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute
an official endorsement, either expressed or implied, by the National Aeronautics and Space
Administration.

Abstract

We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic func-
tions and its implementation in a model checking library along with state-of-the-art algorithms for
building the transition relation and the state space of discrete state systems.

We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the the-
oretical time complexity of these algorithms for all basic arithmetic and relational operators. We
also demonstrate that the time complexity of the generic recursive algorithm for applying a binary
operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams.

We have implemented a new symbolic model checker with the intention to represent in one for-
malism the best techniques available at the moment across a spectrum of existing tools: EVMDDs
for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation,
and the saturation algorithm for reachability analysis. We compare our new symbolic model check-
ing EVMDD library with the widely used CUDD package and show that, in many cases, our tool is
several orders of magnitude faster than CUDD.

1 Introduction

Binary decision diagrams (BDD) [4] have revolutionized the reachability analysis and model check-
ing technology. Arithmetic decision diagrams [3], also called Multi Terminal Binary Decision Dia-
grams (MTBDD) [9] are the natural extension of regular BDDs to arithmetic functions. They take
advantage of the symbolic encoding scheme of BDDs, but functions with large co-domains do not
usually have a very compact representation because there are fewer chances for suffixes to be shared.

Edge-valued decision diagrams have been previously introduced, but only scarcely used. An
early version, the edge valued binary decision diagrams (EVBDD) [13, 14], is particularly useful
when representing both arithmetic and logic functions, which is the case for discrete state model
checking. However, EVBDDs have only been applied to rather obscure applications, such as com-
puting the probability spectrum and the Reed-Muller spectrum of (pseudo)-Boolean functions.

Binary Moment Diagrams [5] were designed to overcome the limitations of BDDs when en-
coding multiplier functions. However, their efficiency seems to be limited only to this particular
type of functions. A new canonization rule for edge-valued decision diagrams enabling them to
encode functions in Z ∪ {+∞} was introduced in [7] along with an extension to multi-way dia-
grams (MDD) [12], but, again, this was applied to a very specific task, of finding minimum length
counterexamples for safety properties. Later, EVMDDs have been also used for partial reachability
analysis.

In this paper we first present a theoretical comparison between EVMDDs and MTMDDs for
building the transition relation of discrete state systems before dealing with an implementation in a
model checker along with state-of-the-art algorithms for state space construction.

2 Background

2.1 Discrete-state Systems

A discrete–state model is a triple (S, S0, T), where the discrete set S is the potential state space of
the model; the set S0 ⊆ S contains the initial states; and T : S → 2S is the transition function
specifying which states can be reached from a given state in one step, which we extend to sets:
T (X) =

⋃
i∈X

T (i). We consider structured systems modeled as a collection of K submodels. A

(global) system state i is then a K-tuple (iK , . . . , i1), where ik is the local state for submodel k, for
K≥k≥1, and S is defined as SK × · · · × S1, the cross–product of K local state spaces Sk, which

1

we abstract to {0, . . . , nk−1}. The (reachable) state space R ⊆ S is the smallest set containing S0

and closed with respect to T , i.e.

R = S0 ∪ T (S0) ∪ T (T (S0) ∪ · · · = T ∗(S0).

Thus, R is least fixpoint of function X 7→ S0 ∪ T (X).

2.2 Symbolic State–space Generation: Breadth–first vs. Saturation
The traditional approach to generate the reachable states of a system is based on a breadth–first
traversal, as derived from classical fixed–point theory, and applies a monolithic T (even when en-
coded as

⋃
e∈E

Te). After d iterations, the currently–known state space contains all states whose

distance from any state in S0 is at most d. However, recent advances have shown that non–BFS,
guided (or chaotic) exploration can result in a better iteration strategy.

An example is the saturation algorithm introduced in [6], which exhaustively fires all events of
Ek in an MDD node at level k1, thereby greedily bringing the node to its final “saturated” form.

2.3 Decision Diagrams
We assume implicitly that the decision diagrams are ordered, i.e. the variables labeling nodes along
any path from the root must follow the order xK , . . . , x1. Ordered DDs can be either reduced (no
duplicate nodes and no node with all edges pointing to the same node, but edges possibly spanning
multiple levels) or quasi–reduced (no duplicate nodes, and all edges spanning exactly one level),
either form being canonical.

We also adopt the extension of BDDs to integer variables, i.e., multi–valued decision diagrams
(MDDs) [12]. MDDs are more naturally suited to represent the state space of arbitrary discrete
systems than BDDs, since no binary encoding must be used to represent the local states for level k
when nk > 2. An even more important reason to use MDDs is that they allow us to better exploit the
event locality present in systems exhibiting a globally–asynchronous locally–synchronous behavior.

3 EVMDDs

3.1 Definition
Definition 3.1 An EVMDD on a group (G, ∗), is a pair A = 〈v, n〉 where v ∈ G will also be noted
A.val and n, also noted A.node, is a node.

A node n is either the unique terminal node 〈0, e〉 where e is the identity element of G or a pair
〈k, p〉 where 1 ≤ k ≤ K and p is an array of edges of size nk. The first element of the pair will be
denoted k = n.level and, when relevant, the element of index i in the array will be denoted by n[i].

Additionally, the notation n[ik, . . . , ik′] is used as a shortcut for n[ik] . . . [ik′].node.

Definition 3.2 An ordered EVMDD is an EVMDD in which every node n satisfies

∀i ∈ Sn.level . n[i].node.level < n.level

As already mentioned, we only consider ordered EVMDDs. The canonicity of unordered EVMDD
is significantly more complex to establish.

1T is then encoded as a disjunction
[

e∈E

Te of events e and E is then divided in
[

1≤k≤K

Ek with each Ek grouping

events not depending on submodels above k and not affecting them.

2

Example 3.1 Graphs are a convenient representation for EVMDDs. For ordered EVMDDs, the
graph directed by node levels is acyclic. Graphically, the terminal node is represented by a circle at
bottom and internal nodes are drawn above according to their level, with all edges pointing down
to children nodes. Examples of graph representation of EVMDDs are given in Figure 1.

A

x2 0 1

x1 0 1

0

0

0

0

0
1

B

x2 0 1

x1 0 1 x1 0 1

0

0

0 0

0
0 0

1

C

x2 0 1

x1 0 1 x1 0 1

0

1

-1 0

0
0 -1

0

Figure 1. Three EVMDDs on group (Z, +) representing the same function f : {0, 1}2 →
Z, (x2, x1) 7→ x2 × x1.

Definition 3.3 Given a node n with n.level = k and ik, . . . , ik′ ∈ Sk × . . . × Sk′ , we define
n(ik, . . . , ik′)

n(ik, . . . , ik′) =
{

n[ik].val if n[ik].node.level < k′

n[ik].val ∗ n[ik].node(in[ik].node.level, . . . , ik′) if n[ik].node.level ≥ k′

This allows the definition of the represented function for any EVMDD A as

f : S → G
(iK , . . . , i1) 7→ A.val ∗A.node(iA.node.level, . . . , i1)

In other words, n(ik, . . . , ik′) is the repetitive application of law ∗ on edge values along the path
going down from node n and following directions given by (ik, . . . , ik′). Hence f(iK , . . . , i1) is ∗
on a path from the root to the terminal node of A.

In this setup, every EVMDD A represents a function f : S → G. The reciprocal is also true:
given a function f , an EVMDD A representing f can be built by setting the values of all edges of A
to the identity element e of G, except those pointing to the terminal node, which take proper values
f(ik, . . . , i1) according to the incoming path leading to it.

Example 3.2 In Figure 1, the EVMDD B is built from f : {0, 1}2 → Z, (x2, x1) 7→ x2 × x1.
according to the method explained above.

Definition 3.4 A redundant node n has all outgoing edges identical

∀i, j ∈ Sn.level . n[i] = n[j]

A reduced EVMDD contains no duplicate or redundant nodes.

3

Definition 3.5 A quasi-reduced EVMDD contains no duplicate nodes and all internal nodes n have
all the descendants on the level below

∀i ∈ Sn.level . n[i].node.level = n.level− 1

From any EVMDD A, we can build a reduced EVMDD representing the same function by just
deleting nodes with all children identical and redirecting the incoming edges to its unique descen-
dant. Similarly, from any EVMDD A, a quasi reduced EVMDD can be built by adding nodes with
all children identical on edges spanning multiple levels.

Example 3.3 In Figure 1 on the preceding page A is reduced, whereas B and C are quasi-reduced.

For the sake of simplicity we will only consider quasi-reduced EVMDDs in the following dis-
cussion. However, proofs and algorithms for the reduced version are very similar, only slightly more
evolved in order to deal with edges skipping levels. We will turn back to reduced EVMDDs only for
implementation since they are never larger in size than their quasi-reduced counterpart, hence could
have more efficient algorithms.

As can be seen in the previous example, even when restricting to quasi-reduced diagrams, the
EVMDD representation of a function f may not be uniquely defined.

Definition 3.6 A canonical node is either the terminal node or a node n such that n[0].val = e.
A canonical EVMDD is an EVMDD in which all nodes are canonical.

It can be proved that for every function f , there exists a unique canonical EVMDD representing
it [7].

In the following, EVMDDs are assumed to be canonical.

3.2 Extensions

EVMDDs can be used even when the algebraic structure is not a group. [7] offers a canonization rule
for N∪{+∞} and (Z,×) can be handled with the canonization rule “gcd{n[i].val | i ∈ Sn.level} =
1 and (n[0].val, . . . , n[nn.level].val) ≥lex 0”.

It is also interesting to notice that EVMDDs are just a generalization of binary decision diagrams
with complemented edges, as presented for example in [11]. Indeed, they are edge-valued diagrams
on G = Z/2Z and complemented (respectively not complemented) edges corresponding to value 1
(respectively 0).

4 EVMDDs compared to MTMDDs

MTBDDs are commonly used in model checking to build the transition relation of discrete-state
systems. In this section we show that EVMDDs are at least as suited for that purpose and oftentimes
significantly better. In the remainder of this section, we pick, often without loss of generality,
(G, ∗) = (Z, +).

4.1 Space Complexity

As stated in section 2.2.6 of [13].

Theorem 4.1 For any function f , the number of nodes of the EVMDD representing f is at most the
number of nodes of the MTMDD representing the same function f .

4

Proof. Let A be the MTMDD representing f . From A we construct the EVMDD (not in canonical
form) A0 by replacing each edge from level 1 to a terminal with value v with an edge with value v to
the unique terminal node 0 and associating value 0 to all other edges (see Figure 2 for an example)2.
Then, we iteratively compute the EVMDD Ak, for each k from 1 to n, through the following process:

A

x2 0 1

x1 0 1 x1 0 1

0 1 2

A0

x2 0 1

x1 0 1 x1 0 1

0

0

0 0

0
1 1

2

transform MTMDD
A into EVMDD A0

Figure 2. Building the EVMDD A0 (right) from MTMDD A (left)

• for each node n at level k, subtract n[0].val from all outgoing edges and add this value to all
incoming edges;

• merge all duplicate nodes at level k (by duplicate nodes we mean two nodes having edges xi

holding same value and pointing to same children for each i in the range of variable xk).

See Figure 3 on the next page for an example.
To prove that Ak and A represent the same function, it is sufficient to see that A and A0 represent

the same function and that the iterative transformation preserves the sum of values on any path
(iK , . . . , i1) from the root of the diagram to the unique terminal node (plus the value of the root’s
incoming edge)

Ak.val + Ak.node(iK , . . . , i1) = Ak−1.val + Ak−1.node(iK , . . . , i1)

Since AK is in canonical form and since for each k, the number of nodes of Ak is at most the
number of nodes of Ak−1, we can conclude that the size of an EVMDD is never larger than that of
the corresponding MTMDD. �

This doesn’t prove that EVMDDs always require less memory than MTMDDs since they need
extra space to store the edge values, but no worse than up to a small factor 3. On the other hand,
EVMDDs can be exponentially better than MTMDD in some cases. For example, the function

{0, B − 1}K → Z

(iK , . . . , i1) 7→
K∑

k=1

ikBk−1

2This process is similar to the one used in section 3.1 on page 2 to prove that every function can be represented by an
EVMDD.

3Usually 2, assuming that edge values are as big as node pointers.

5

A0

x2 0 1

x1 0 1 x1 0 1

0

0

0 0

0
1 1

2

x2 0 1

x1 0 1 x1 0 1

0

0

0 1

0
1 0

1

A1

x2 0 1

x1 0 1

0

0

0
1

0
1

report up
n[0].val

merge
duplicate

nodes

Figure 3. Constructing EVMDD A1 (right) from EVMDD A0 (left)

where (B ≥ 2), requires
BK+1 − 1

B − 1
nodes in its MTMDD representation4 whereas it can be repre-

sented as an EVMDD with only K + 1 nodes5.

4.2 Time complexity

What makes decision diagrams a useful data structure for symbolic model-checking is not only their
space efficiency but the ability to efficiently compute common operations.

Section 2 of [9] gives an algorithm to compute any binary operation on MTBDDs. The apply
algorithm can be easily generalized to MDDs for any n-ary operator �n. It computes its result in

time O

(
n∏

i=1

|fi|

)
, where |fi| is the size of MTMDD representing operand i (in nodes).

Section 2.2 of [13] gives the equivalent Algorithm 1 on the facing page for edge-valued decision
diagrams. This is the binary version, but n-ary one is very similar for any n ∈ N∗.

As stated in section 2.2.6 of [13]

Theorem 4.2 The number of recursive calls of the above apply algorithm is the same for MTMDDs
and for EVMDDs representing the same functions.

Lemma 4.1 Two paths (iK , . . . , ik+1) and (jK , . . . , jk+1) lead to the same node in A

A.node[iK , . . . , ik+1] = A.node[jK , . . . , jk+1]

if and only if they lead to the same node in Ak−1

Ak−1.node[iK , . . . , ik+1] = Ak−1[jK , . . . , jk+1]

Proof. A and Ak−1 are identical from level k + 1 to level K. �

4Since all terminal values are distinct.
5More generally, any linear function requires only one node per level in its EVMDD representation.

6

Algorithm 1 computes any binary operation �2 on EVMDDs 〈v, n〉 and 〈v′, n′〉
apply(�2 : edge ∗ edge→ edge, 〈v, n〉 : edge, 〈v′, n′〉 : edge) : edge

k ← n.level // = n′.level since EVMDDs are quasi-reduced

// base case
if k = 0 then

return 〈v �2 v′, t〉 // t is the unique terminal node

// lookup in cache
if CacheFind(�2, 〈v, n〉, 〈v′, n′〉, 〈m, r〉) then

return 〈m, r〉

r ← NewNode(k)
for i = 0 to nk − 1 do

r[i]← apply(�2, 〈v + n[i].val, n[i].node〉, 〈v′ + n′[i].val, n′[i].node〉)
m← r[0].val
for i = 0 to nk − 1 do

r[i].val← r[i].val−m

// check if a node identical to r already exists
r ← FindOrAdd(r)

// save result in cache
CacheInsert(�2, 〈v, n〉, 〈v′, n′〉, 〈m, r〉)

return 〈m, r〉

Lemma 4.2 Two paths (iK , . . . , ik+1) and (jK , . . . , jk+1) lead to the same node in AK with the
same value

AK .node[iK , . . . , ik+1] = AK .node[jK , . . . , jk+1]
and AK .node(iK , . . . , ik+1) = AK .node(jK , . . . , jk+1)

if and only if they lead to the same node in Ak with the same value

Ak.node[iK , . . . , ik+1] = Ak.node[jK , . . . , jk+1]
and Ak.node(iK , . . . , ik+1) = Ak.node(jK , . . . , jk+1)

Proof. First, let us prove by induction on l, from k to K, that:

Ak.node[iK , . . . , ik+1] = Al.node[iK , . . . , ik+1]
and Ak.val + Ak.node(iK , . . . , ik+1) = Al.val + Al.node(iK , . . . , ik+1)

• for l = k, the property trivially holds;

• if the property holds for a value of l between k and K − 1, it still holds for l + 1, since the
computation of Al+1 from Al can only merge duplicate nodes at level l + 1 ≥ k + 1.

�
Proof. [Theorem 4.2] We show the proof for the unary version of the algorithm. Proofs for other
versions are similar, only a bit more verbose.

If we do not take into consideration the caches, the two algorithms are obviously equivalent so
what we need to prove is that a cache hit occurs in the EVMDD apply algorithm with diagram AK

if and only if it occurs in the MTMDD algorithm with diagram A. In other words, we have to prove
for every two paths (iK , . . . , ik+1) and (jK , . . . , jk+1) that they lead to the same node in A

A.node[iK , . . . , ik+1] = A.node[jK , . . . , jk+1]

7

if and only if they reach the same node in AK with the same value:

AK .node[iK , . . . , ik+1] = AK .node[jK , . . . , jk+1]
and AK .node(iK , . . . , ik+1) = AK .node(jK , . . . , jk+1)

Therefore, from lemmas 4.1 on page 6 and 4.2 on the preceding page it remains to prove that
two paths (iK , . . . , ik+1) and (jK , . . . , jk+1) lead to the same node in Ak−1

Ak−1.node[iK , . . . , ik+1] = Ak−1.node[jK , . . . , jk+1] (1)

if and only if they reach the same node in Ak with the same value:

Ak.node[iK , . . . , ik+1] = Ak.node[jK , . . . , jk+1]
and Ak.node(iK , . . . , ik+1) = Ak.node(jK , . . . , jk+1)

(2)

• Let us prove that (1) implies (2). The first part of (2) is obvious: if two paths lead to
the same node before merging, this still holds after merging. Second part is slightly more
complex. Indeed, Ak.node(iK , . . . , ik+1) is just the value attached to edge ik+1 of node
Ak.node[iK , . . . , ik+2] since all other edges hold value 0. This value is the one reported up
when constructing Ak from Ak−1 for node Ak.node[iK , . . . , ik+1] = Ak.node[jK , . . . , jk+1]
so it is the same for Ak.node(jK , . . . , jk+1), which is the second part of (2).

• In the other direction: (2) implies (1).
If (2) holds then Ak−1.node[iK , . . . , ik+1] and Ak−1.node[jK , . . . , jk+1] are identical (for if
they were not, then (2) does not hold on Ak computed from Ak−1). Hence (1), since Ak−1

doesn’t contain any duplicate at level k.

�
In conclusion, EVMDD computations are at least not slower than the MTMDD equivalent. How-

ever, particular operators �n may enable much better algorithms on EVMDDs.

4.2.1 Addition of Constant: EVMDD +c

Adding a constant c to an EVMDD 〈v, n〉 is just computing 〈c+v, n〉, which can be done in constant
time.

4.2.2 Multiplication with Scalar: EVMDD ×c

As stated in section 2.2.2 of [13], computing f × c is just multiplying each edge value of EVMDD
representing f by c, which can be done in time O (|f |).

4.2.3 Addition: EVMDD + EVMDD

As stated in section 2.2.2 of [13], addition satisfies the property

〈v, n〉+ 〈v′, n′〉 = (〈0, n〉+ 〈0, n′〉) + (v + v′)

allowing to cache only edges with value 0, therefore leading to a slightly modified apply, Algo-
rithm 2 on the next page The complexity of the algorithm to compute f + g is O (|f | |g|).

It’s also interesting to notice that this algorithm offers a simple upper bound to the size of the
result of an addition

|f + g| ≤ |f | |g|

4.2.4 Remainder and Euclidean Division: EVMDD %c and EVMDD /c

As stated in section 2.2.4 of [13], there is no need to cache values equal modulo c, hence the com-
plexity of these algorithms is O (|f |c).

8

Algorithm 2 computes sum of EVMDDs 〈v, n〉 and 〈v′, n′〉
plus(〈v, n〉 : edge, 〈v′, n′〉 : edge) : edge

k ← n.level // = n′.level since EVMDDs are quasi-reduced

// base case
if k = 0 then

return 〈v + v′, t〉 // t is the unique terminal node

// lookup in cache
if CacheFind(+, 〈0, n〉, 〈0, n′〉, r) then

return 〈v + v′, r〉

r ← NewNode(k)
for i = 0 to nk − 1 do

r[i]← plus(n[i], n′[i])

// check if a node identical to r already exists
r ← FindOrAdd(r)

// save result in cache
CacheInsert(+, 〈v, n〉, 〈v′, n′〉, 〈m, r〉)

return 〈v + v′, r〉

4.2.5 Minimum and Maximum

Per section 2.2.3 of [13], max {f(x) | x ∈ S} and min {f(x) | x ∈ S} can be easily computed by
traversing the graph and caching the result for each node, hence the complexity is O (|f |).

4.2.6 Multiplication: EVMDD × EVMDD

As stated in section 2.2.5 of [13], the result of a multiplication can have an EVMDD representation
of exponential size in terms of the operands. For example, let S be {0, 1}K , f : (xK , . . . , x1) 7→
K∑

k=2

xk2k−2 and g : (xK , . . . , x1) 7→ x1, f and g have both an EVMDD representation with K + 1

nodes whereas fg needs 2K nodes (here again, we see the importance of variable ordering, putting
x1 at top allows fg to be represented with 2K nodes). Therefore, we cannot expect to find an
algorithm with better worst-case complexity. However, the following equation

〈v, n〉 × 〈v′, n′〉 = vv′ + v〈0, n′〉+ v′〈0, n〉+ 〈0, n〉 × 〈0, n′〉

suggests the alternative Algorithm 3 on the following page. The first product is an integer multi-
plication done in constant time. The next two are multiplications by a constant done in O (|f |) and
O (|g|), respectively. The last one is done through recursive calls. The first addition takes constant
time, the second one takes O (|f | |g|) and produce a result of size at most |f | |g|, hence a cost of
O (|f | |g| |fg|) for the last addition. The function times is called O (|f | |g|) times, hence a final
complexity of O

(
|f |2 |g|2 |fg|

)
.

Although we were unable to theoretically compare this algorithm to the generic Algorithm 1 on
page 7, it seems to perform far better in practice when the size of the result is moderate.

4.2.7 Relational Operators: EVMDD < c

Relational operators (<, >,≤,≥, = and 6=) are used in building transition relations. Unfortunately,
the corresponding operations remain somewhat expensive. But, as stated in section 2.2.3 of [13],

9

Algorithm 3 computes product of EVMDDs 〈v, n〉 and 〈v′, n′〉
times(〈v, n〉 : edge, 〈v′, n′〉 : edge) : edge

k ← n.level // = n′.level since EVMDDs are quasi-reduced

// base case
if k = 0 then

return 〈v × v′, t〉 // t is the unique terminal node

// lookup in cache
if CacheFind(×, 〈0, n〉, 〈0, n′〉, r) then

return plusc(plus(plus(timesc(〈0, n〉, v′), timesc(〈0, n′〉, v)), r), v × v′)

r ← NewNode(k)
for i = 0 to nk − 1 do

r[i]← times(n[i], n′[i])

// check if a node identical to r already exists
r ← FindOrAdd(r)

// save result in cache
CacheInsert(×, 〈v, n〉, 〈v′, n′〉, 〈m, r〉)

return plusc(plus(plus(timesc(〈0, n〉, v′), timesc(〈0, n′〉, v)), r), v × v′)

f < g can be computed as f −g < 0 and the operation “less than constant” can be greatly improved
as shown in Algorithm 4 on the facing page through the use of min and max, which are easy to
compute from section 4.2.5 on the previous page.

We also developed Algorithm 5 on page 12, which initially was deemed as “optimized”. The
idea behind this algorithm is that for a call lt((, p),) returning (lb, ub, q), the interval [lb, ub] is the
set {c | ∀x. p (x) < c ⇔ q (x) = 1}. In other words, [lb, ub] is the exact interval for which the
relation p < . is given by q.

The later algorithm is theoretically better than the former in that more cache hits occur. It can
even be viewed as optimal in the sense that it never creates duplicate nodes from a same node of the
input EVMDD. However, in practice, this advantage appears quite small in most cases. Moreover,
in order to implemented it, it requires an ordered cache, such as a search tree, instead of a simple
hash table and the resulting log factor seems to overcome any advantage.

Algorithms for other relational operators analogous to <.

4.3 Versatility

The advantages of EVMDDs over MTMDDs come at a price of a slightly reduced versatility. Both
EVMDDs and MTMDDs can be used to represent functions more general than arithmetic functions
over integers. For MTMDDs, the only restriction is that the domain and co-domain of the encoded
function have to be finite. However EVMDDs, despite the extensions of section 3.2 on page 4,
also require some algebraic structure. For example, they cannot be directly used with floats since
the sum of two floating point values has to be rounded to be represented as a floating point value.
In computer arithmetic, [15] encodes floating point functions through integer EVMDDs of their
binary (bit-level) representation. Even though space efficient, floating point computations on this
representation remain expensive.

Another problem affecting EVMDDs but not MTMDDs is false overflow. Indeed, computers
do not operate over Z proper, but on Z/232Z (for 32bit platforms, or the equivalent structure for
the appropriate size of integers – 16, 32, 64 bits). Integer overflow is possible when adding edge
values, even when the represented function may fit within 32 bits. An example of such an internal

10

Algorithm 4 computes 〈v, n〉 < c for EVMDD 〈v, n〉 and integer c

lt(〈v, n〉 : edge, c : int) : edge
k ← n.level

// base cases
if c− v ≤ min(n) then

return 〈0, t〉 // t is the unique terminal node
if c− v > max(n) then

return 〈1, t〉 // t is the unique terminal node

// lookup in cache
if CacheFind(<, 〈0, n〉, c− v, 〈m, r〉) then

return 〈m, r〉

r ← NewNode(k)
for i = 0 to nk − 1 do

r[i]← lt(n[i], c− v)
m← r[0].val
for i = 0 to nk − 1 do

r[i].val← r[i].val−m

// check if a node identical to r already exists
r ← FindOrAdd(r)

// save result in cache
CacheInsert(<, 〈0, n〉, c− v, 〈m, r〉)

return 〈m, r〉

overflow can be seen in figure 4 on the following page. Since Z/232Z is still an additive group,
these overflows are harmless for addition and multiplication by a constant. The general algorithm
from section 4.2 on page 6 is not affected either, as it applies operations only on leaf nodes, but
this observation no longer holds on the other algorithms of this section. A necessary and sufficient
condition on a function f for not having false overflows in the corresponding EVMDD is

∀k ∈ {1, . . . ,K} . ∀(iK , . . . , ik+1) ∈ SK × . . .× Sk+1 . ∀ik ∈ Sk .
f(iK , . . . , ik+1, ik, 0, . . . , 0)− f(iK , . . . , ik+1, 0, 0, . . . , 0) does not overflow

5 Implementation
Symbolic model checkers such as (Nu)SMV [1] or SAL [2] are based on the library CUDD [10]
which offers an efficient implementation of BDDs and MTBDDs. For state space generation, they
use a plain breadth first search (BFS) algorithm.

Our goal was to implement a new symbolic model checking library featuring EVMDDs for
transition relation construction and saturation [6] for state space generation. We also developed a
basic model checking front-end to test the library and compare it to CUDD. Binaries for both and
model checker sources are available at http://research.nianet.org/˜radu/evmdd/.

In this section, we discuss some implementation details before presenting experimental results.

5.1 Memory Management
It is well known that model checking can be memory intensive, making memory management a
critical issue when implementing a decision diagrams library.

11

http://research.nianet.org/~radu/evmdd/

Algorithm 5 computes 〈v, n〉 < c for EVMDD 〈v, n〉 and integer c

lt(〈v, n〉 : edge, c : int) : int ∗ int ∗ edge
k ← n.level

// base cases
if c− v ≤ min(n) then

return (−∞, min(n), 〈0, t〉) // t is the unique terminal node
if c− v > max(n) then

return (max(n) + 1, +∞, 〈1, t〉) // t is the unique terminal node

// lookup in cache for an interval [lb, ub] containing c− v
if CacheFind(<, 〈0, n〉, c− v, (lb, ub, 〈m, r〉)) then

return (lb, ub, 〈m, r〉)

r ← NewNode(k)
lb← −∞
ub← +∞
for i = 0 to nk − 1 do

lb′, ub′, r[i]← lt(n[i], c− v)
lb← max(lb, lb′ + n[i].val)
ub← min(ub, ub′ + n[i].val)

m← r[0].val
for i = 0 to nk − 1 do

r[i].val← r[i].val−m

// check if a node identical to r already exists
r ← FindOrAdd(r)

// save result in cache
CacheInsert(<, 〈0, n〉, [lb, ub], (lb, ub, 〈m, r〉))

return (lb, ub, 〈m, r〉)

x 0 1

-2,000,000,000 2,000,000,000

x 0 1

0

-2,000,000,000

0
-294,967,296

Figure 4. MTMDD (left) and EVMDD (right) encoding the same function over 32-bit integers,
f : x ∈ {0, 1} 7→ 2, 000, 000, 000× (2x− 1).

12

The usual addressing scheme of BDD nodes is through pointers. Here, with MDD, nodes at
different levels with different variable ranges are of different sizes. For that reason, we chose an
index-based addressing scheme (level, index), allowing to allocate nodes independently at each
level.

Decision diagrams algorithms rely heavily on several cache structures. They are usually imple-
mented as lossy hash tables: upon collision, older entries are simply discarded. We avoided the loss
of information by choosing dynamically resizing hash tables with chaining. The non-lossy caches
give slightly faster algorithms at the price of some additional memory.

Different diagrams often share subgraphs, making explicit freeing of disconnected sub-diagrams
very difficult. Moreover, symbolic model checking algorithms often produce a large number of
temporary nodes which rapidly become disconnected (also called garbage). The easiest way to
reclaim memory is to use some garbage collection procedure. The most commonly used technique
is via reference counting. This is perfectly suited since diagrams are DAGs, hence avoiding circular
reference, the main drawback of reference counting. Instead, we chose to use a simple mark & sweep
algorithm that proved to be both simple and efficient, because it requires minimal book-keeping. We
keep reference counting only as an interface with library users.

5.2 Encoding the Transition Relation

We represent the transition relation T as a disjunction
⋃
e∈E

Te of events e. Each event Te is repre-

sented as an MDD of high 2K, with level 2k encoding variable xk before the transition and level
2k − 1 same variable x′k but after the transition6.

This disjunction representation is well suited for globally–asynchronous locally–synchronous
systems, where each event encodes some local transition. However, we could end up with many
events that are just the identity relation for most variables, The numerous “identity patterns” in the
MDD are very expensive to deal with, both in terms of memory usage and computation time. To
avoid this problem, we chose yet another reduction rule of nodes, different than the two already
presented in definitions 3.4 on page 3 and 3.5 on page 4: the full-identity reduction from [8].

xk 0 1 2

x′k 0 1 2x′k 0 1 2x′k 0 1 2

xk−1 0 1 2 3 xk−1 0 1 2 3

Figure 5. An identity pattern in a reduced MDD (left) and its identity reduced equivalent (right).

An example of such an identity pattern and its full-identity reduction is shown in Figure 5. In
this figure, edges leading to terminal 0 are omitted for clarity.

6That is, we consider Te as a part of S × S = SK × SK × . . .× S1 × S1. It is interesting to notice, that Te does not
need to be a function S → S, allowing to model non deterministic behaviors.

13

Table 1 shows the execution time with standard reduction and full-identity reduction rules for
the classical model of dining philosophers.

Model standard full-identity
size (sec) (sec)

50 0.36 0.02
100 1.68 0.04
200 7.85 0.07
400 36.72 0.20

1000 — 0.91
7000 — 37.47

Table 1. Execution time for building the transition relation using standard and fully-identity reduced
MDDs (“—” means “out of memory”).

5.3 State Space Construction

For state space construction, we use the Saturation algorithm [6] instead of the classical breadth
first search exploration. This heuristic often gives spectacular improvements when building the state
spaces of globally–asynchronous locally–synchronous systems. This is certainly the major source
of improvement of our implementation over existing BDD libraries.

As advised in [8], we chose to merge all events e with same topmost affected level7 in the same
MDD. The cost of the unions slows down the generation of the transition relation but generally
makes the state space construction up to several times faster.

5.4 Experimental Results

Our new model checker comprises 7000 lines of ANSI-C code for the library and 4000 lines for the
simple model checker that provides a common interface to our library and CUDD. Table 2 on the
facing page shows execution times for finding deadlocks on a suite of classical models. The search
for deadlocks in a deadlock-free system equates to building state space. Programs to generate all
models can be found in the examples directory of our simple model checker source distribution,
available at http://research.nianet.org/˜radu/evmdd/. We collected the results on
a Linux machine with Intel Core 2 processor, 1.2GHz, 1.5GB of memory.

Compared to the first implementation of saturation algorithm [6] in the tool SMART, our new
implementation is always several (up to a few dozens) times faster. This is due to both the encoding
of the transition relation and our simple C implementation in comparison to the object-oriented C++
version.

6 Conclusions and Future Work

We studied the advantages of the EVMDD data structure over the widely used MTBDDs for the
construction of transition relation of finite state systems and implemented them in a library, along
with state-of-the-art algorithms for state space generation. We obtained execution times several
orders of magnitude faster than the CUDD library and classical algorithms, with a reduced memory
usage enabling to handle extremely large systems. Future work should focus primarily on integrating
our library into the SAL model checker.

7i.e. same value of max {k | ∃i, j ∈ Sk . i 6= j ∧ (i, j) ∈ Te}

14

http://research.nianet.org/~radu/evmdd/

Model Reachable CUDD EVMDD
size states (sec) (sec)
Dining philosophers

100 4× 1062 5.15 0.04
200 2× 10125 1493.36 0.10

1000 9× 10626 — 1.10
10000 4× 106269 — 77.77
16000 2× 1010031 — 196.84
Round robin mutual exclusion protocol

40 9× 1013 4.04 0.46
60 1× 1020 15.59 1.54

100 2× 1032 599.16 7.42
200 7× 1062 — 75.94

Slotted ring protocol
10 8× 109 1.07 0.01
20 2× 1020 1804.48 0.04

100 2× 10105 — 3.74
300 3× 10318 — 111.29
500 5× 10531 — 505.04

Model Reachable CUDD EVMDD
size states (sec) (sec)
Kanban assembly line

10 1× 109 0.84 0.01
20 8× 1011 811.89 0.04

100 1× 1019 — 3.25
200 3× 1022 — 32.31
400 6× 1025 — 697.90

Knights problem
5 6× 107 921.95 0.30
7 1× 1015 — 3.73
9 8× 1024 — 47.80

Randomized leader election protocol
6 2× 106 4.62 1.20
7 2× 107 23.87 3.69
8 3× 108 176.16 10.04
9 5× 109 810.36 24.86

10 6× 1010 — 85.54
11 9× 1011 — 423.41

Table 2. Execution times for finding deadlocks using our library or CUDD (“—” means “> 1hour”).

Our results show that, as old fashioned as it may seem, symbolic model checking remains an ef-
ficient technique for analyzing globally–asynchronous locally–synchronous systems and significant
improvements are still possible.

References
1. NuSMV model checker. http://nusmv.irst.itc.it/.

2. SAL model checker. http://sal.csl.sri.com/.

3. R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo
Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. In ICCAD,
pages 188–191, 1993.

4. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-
tions on Computers, 35:677–691, 1986.

5. Randal E. Bryant and Yirng-An Chen. Verification of arithmetic functions with binary moment
diagrams. Technical Report CS-94-160, CMU, 1994.

6. Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In Tiziana Margaria and Wang Yi, editors, Proc.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), LNCS 2031, pages
328–342, Genova, Italy, April 2001. Springer.

7. Gianfranco Ciardo and Radu Siminiceanu. Using edge-valued decision diagrams for symbolic
generation of shortest paths. In Mark D. Aagaard and John W. O’Leary, editors, Proc. Fourth In-
ternational Conference on Formal Methods in Computer-Aided Design (FMCAD), LNCS 2517,
pages 256–273, Portland, OR, USA, November 2002. Springer.

15

http://nusmv.irst.itc.it/
http://sal.csl.sri.com/

8. Ciardo, G. and Yu, J. Saturation-based symbolic reachability analysis using conjunctive and
disjunctive partitioning. In Proc. CHARME, October 2005.

9. Edmund Clarke, M. Fujita, and X. Zhao. Application of multi-terminal binary decision dia-
grams. Technical report, IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expan-
sion in Circuit Design, 1995.

10. Fabio Somenzi. CUDD library, Colorado University Decision Diagram. http://vlsi.
colorado.edu/˜fabio/CUDD/.

11. K. S. Brace and R. L. Rudell and R. E. Bryant. Efficient implementation of a BDD package. In
Proceedings of the 27th Design Automation Conference, pages 40–45, June 1990.

12. T. Kam, T. Villa, R.K. Brayton, and Alberto Sangiovanni-Vincentelli. Multi-valued decision
diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

13. Y.-T. Lai, M. Pedram, and B. K. Vrudhula. Formal verification using edge-valued binary deci-
sion diagrams. IEEE Transactions on Computers, 45:247–255, 1996.

14. Yung-Te Lai and Sarma Sastry. Edge-valued binary decision diagrams for multi-level hierarchi-
cal verification. In DAC, pages 608–613, 1992.

15. S. Nagayama, and T. Sasao, and J. T. Butler. Floating-point numerical function generators using
EVMDDs for monotone elementary functions. In 39th International Symposium on Multiple-
Valued Logic (ISMVL 2009), pages 349–355, 2009.

16

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Contractor Report

 4. TITLE AND SUBTITLE
Model-Checking with Edge-Valued Decision Diagrams

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Roux, Pierre; Siminiceanu, Radu I.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Benedetto L. Di Vito

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 64
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model
checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We
provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all
basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a
binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model
checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools:
EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm
for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show
that, in many cases, our tool is several orders of magnitude faster than CUDD.

15. SUBJECT TERMS
Formal methods; Hybrid abstraction; Model checking; Decision diagrams

18. NUMBER
 OF
 PAGES

23
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

NNX08AC59A
5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

645846.02.07.07.15.03

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2010-216710

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
06 - 201001-

