12 research outputs found
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism
There is great evidence in recent years that oxygen free radicals play an important role in the pathophysiology of many neuropsychiatric disorders. The present study was performed to assess the changes in red blood cells thiobarbituric acid-reactive substances (TBARS) levels, and Superoxide dismutase (SOD), catalase (CAT), adenosine deaminase (ADA) and xanthine oxidase (XO) activities in patients with autism (n = 27) compared to age- and sex-matched normal controls (n = 26). In the autistic group, increased TBARS levels (p < 0.001) and XO (p < 0.001) and SOD (p < 0.001) activity, decreased CAT (p < 0.001) activity and unchanged ADA activity were detected. It is proposed that antioxidant status may be changed in autism and this new situation may induce lipid peroxidation. These findings indicated a possible role of increased oxidative stress and altered enzymatic antioxidants, both of which may be relevant to the pathophysiology of autism
Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism
There is great evidence in recent years that oxygen free radicals play an important role in the pathophysiology of many neuropsychiatric disorders. The present study was performed to assess the changes in red blood cells thiobarbituric acid-reactive substances (TBARS) levels, and superoxide dismutase (SOD), catalase (CAT), adenosine deaminase (ADA) and xanthine oxidase (XO) activities in patients with autism (n = 27) compared to age- and sex-matched normal controls (n = 26). In the autistic group, increased TBARS levels (p < 0.001) and XO (p < 0.001) and SOD (p < 0.001) activity, decreased CAT (p < 0.001) activity and unchanged ADA activity were detected. It is proposed that antioxidant status may be changed in autism and this new situation may induce lipid peroxidation. These findings indicated a possible role of increased oxidative stress and altered enzymatic antioxidants, both of which may be relevant to the pathophysiology of autism
Serum levels of copper, selenium and manganese in forestry workers testing IgG positive for Brucella
Human CRY1 variants associate with attention deficit/hyperactivity disorder
Attention deficit/hyperactivity disorder (ADHD) is a common and heritable phenotype frequently accompanied by insomnia, anxiety, and depression. Here, using a reverse phenotyping approach, we report heterozygous coding variations in the core circadian clock gene cryptochrome 1 in 15 unrelated multigenerational families with combined ADHD and insomnia. The variants led to functional alterations in the circadian molecular rhythms, providing a mechanistic link to the behavioral symptoms. One variant, CRY1 Delta 11 c.1657+3A>C, is present in approximately 1% of Europeans, therefore standing out as a diagnostic and therapeutic marker. We showed by exome sequencing in an independent cohort of patients with combined ADHD and insomnia that 8 of 62 patients and 0 of 369 controls carried CRY1 Delta 11. Also, we identified a variant, CRY116 c.825+1G>A, that shows reduced affinity for BMAL1/CLOCK and causes an arrhythmic phenotype. Genotype-phenotype correlation analysis revealed that this variant segregated with ADHD and delayed sleep phase disorder (DSPD) in the affected family. Finally, we found in a phenome-wide association study involving 9438 unrelated adult Europeans that CRY1 Delta 11 was associated with major depressive disorder, insomnia, and anxiety. These results defined a distinctive group of circadian psychiatric phenotypes that we propose to designate as "circiatric" disorders
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%(1), much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factorSP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.11Nsciescopu