1,195 research outputs found

    An approximation algorithm for counting contingency tables

    Full text link
    We present a randomized approximation algorithm for counting contingency tables , m × n non-negative integer matrices with given row sums R = ( r 1 ,…, r m ) and column sums C = ( c 1 ,…, c n ). We define smooth margins ( R , C ) in terms of the typical table and prove that for such margins the algorithm has quasi-polynomial N O (ln N ) complexity, where N = r 1 + … + r m = c 1 + … + c n . Various classes of margins are smooth, e.g., when m = O ( n ), n = O ( m ) and the ratios between the largest and the smallest row sums as well as between the largest and the smallest column sums are strictly smaller than the golden ratio (1 + sqrt5 {sqrt{5}} )/2 ≈ 1.618. The algorithm builds on Monte Carlo integration and sampling algorithms for log-concave densities, the matrix scaling algorithm, the permanent approximation algorithm, and an integral representation for the number of contingency tables. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77454/1/20301_ftp.pd

    The role of input noise in transcriptional regulation

    Get PDF
    Even under constant external conditions, the expression levels of genes fluctuate. Much emphasis has been placed on the components of this noise that are due to randomness in transcription and translation; here we analyze the role of noise associated with the inputs to transcriptional regulation, the random arrival and binding of transcription factors to their target sites along the genome. This noise sets a fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily obscured by experimental limitations and even by conventional methods for plotting the variance vs. mean expression level. We argue that simple, global models of noise dominated by transcription and translation are inconsistent with the embedding of gene expression in a network of regulatory interactions. Analysis of recent experiments on transcriptional control in the early Drosophila embryo shows that these results are quantitatively consistent with the predicted signatures of input noise, and we discuss the experiments needed to test the importance of input noise more generally.Comment: 11 pages, 5 figures minor correction

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing

    Get PDF
    Previous experimental studies suggest that the mutation rate is nonuniform across the yeast genome. To characterize this variation across the genome more precisely, we measured the mutation rate of the URA3 gene integrated at 43 different locations tiled across Chromosome VI. We show that mutation rate varies 6-fold across a single chromosome, that this variation is correlated with replication timing, and we propose a model to explain this variation that relies on the temporal separation of two processes for replicating past damaged DNA: error-free DNA damage tolerance and translesion synthesis. This model is supported by the observation that eliminating translesion synthesis decreases this variation

    Recurrent RNA motifs as probes for studying RNA-protein interactions in the ribosome

    Get PDF
    To understand how the nucleotide sequence of ribosomal RNA determines its tertiary structure, we developed a new approach for identification of those features of rRNA sequence that are responsible for formation of different short- and long-range interactions. The approach is based on the co-analysis of several examples of a particular recurrent RNA motif. For different cases of the motif, we design combinatorial gene libraries in which equivalent nucleotide positions are randomized. Through in vivo expression of the designed libraries we select those variants that provide for functional ribosomes. Then, analysis of the nucleotide sequences of the selected clones would allow us to determine the sequence constraints imposed on each case of the motif. The constraints shared by all cases are interpreted as providing for the integrity of the motif, while those ones specific for individual cases would enable the motif to fit into the particular structural context. Here we demonstrate the validity of this approach for three examples of the so-called along-groove packing motif found in different parts of ribosomal RNA

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take
    corecore