188 research outputs found

    May 12 1997 Cme Event: I. a Simplified Model of the Pre-Eruptive Magnetic Structure

    Full text link
    A simple model of the coronal magnetic field prior to the CME eruption on May 12 1997 is developed. First, the magnetic field is constructed by superimposing a large-scale background field and a localized bipolar field to model the active region (AR) in the current-free approximation. Second, this potential configuration is quasi-statically sheared by photospheric vortex motions applied to two flux concentrations of the AR. Third, the resulting force-free field is then evolved by canceling the photospheric magnetic flux with the help of an appropriate tangential electric field applied to the central part of the AR. To understand the structure of the modeled configuration, we use the field line mapping technique by generalizing it to spherical geometry. It is demonstrated that the initial potential configuration contains a hyperbolic flux tube (HFT) which is a union of two intersecting quasi-separatrix layers. This HFT provides a partition of the closed magnetic flux between the AR and the global solar magnetic field. The vortex motions applied to the AR interlock the field lines in the coronal volume to form additionally two new HFTs pinched into thin current layers. Reconnection in these current layers helps to redistribute the magnetic flux and current within the AR in the flux-cancellation phase. In this phase, a magnetic flux rope is formed together with a bald patch separatrix surface wrapping around the rope. Other important implications of the identified structural features of the modeled configuration are also discussed.Comment: 25 pages, 11 figures, to appear in ApJ 200

    Towards a Realistic, Data-Driven Thermodynamic MHD Model of the Global Solar Corona

    Full text link
    In this work we describe our implementation of a thermodynamic energy equation into the global corona model of the Space Weather Modeling Framework (SWMF), and its development into the new Lower Corona (LC) model. This work includes the integration of the additional energy transport terms of coronal heating, electron heat conduction, and optically thin radiative cooling into the governing magnetohydrodynamic (MHD) energy equation. We examine two different boundary conditions using this model; one set in the upper transition region (the Radiative Energy Balance model), as well as a uniform chromospheric condition where the transition region can be modeled in its entirety. Via observation synthesis from model results and the subsequent comparison to full sun extreme ultraviolet (EUV) and soft X-Ray observations of Carrington Rotation (CR) 1913 centered on Aug 27, 1996, we demonstrate the need for these additional considerations when using global MHD models to describe the unique conditions in the low corona. Through multiple simulations we examine ability of the LC model to asses and discriminate between coronal heating models, and find that a relative simple empirical heating model is adequate in reproducing structures observed in the low corona. We show that the interplay between coronal heating and electron heat conduction provides significant feedback onto the 3D magnetic topology in the low corona as compared to a potential field extrapolation, and that this feedback is largely dependent on the amount of mechanical energy introduced into the corona.Comment: 17 pages, 11 figures, Submitted to ApJ on 12/08/200

    Numerical Investigation of a Coronal Mass Ejection from an Anemone Active Region: Reconnection and Deflection of the 2005 August 22 Eruption

    Full text link
    We present a numerical investigation of the coronal evolution of a coronal mass ejection (CME) on 2005 August 22 using a 3-D thermodynamics magnetohydrodynamic model, the SWMF. The source region of the eruption was anemone active region (AR) 10798, which emerged inside a coronal hole. We validate our modeled corona by producing synthetic extreme ultraviolet (EUV) images, which we compare to EIT images. We initiate the CME with an out-of-equilibrium flux rope with an orientation and chirality chosen in agreement with observations of a H-alpha filament. During the eruption, one footpoint of the flux rope reconnects with streamer magnetic field lines and with open field lines from the adjacent coronal hole. It yields an eruption which has a mix of closed and open twisted field lines due to interchange reconnection and only one footpoint line-tied to the source region. Even with the large-scale reconnection, we find no evidence of strong rotation of the CME as it propagates. We study the CME deflection and find that the effect of the Lorentz force is a deflection of the CME by about 3 deg/Rsun towards the East during the first 30 minutes of the propagation. We also produce coronagraphic and EUV images of the CME, which we compare with real images, identifying a dimming region associated with the reconnection process. We discuss the implication of our results for the arrival at Earth of CMEs originating from the limb and for models to explain the presence of open field lines in magnetic clouds.Comment: 14 pages, 8 Figures, accepted to Astrophysical Journa

    Surface Alfven Wave Damping in a 3D Simulation of the Solar Wind

    Full text link
    Here we investigate the contribution of surface Alfven wave damping to the heating of the solar wind in minima conditions. These waves are present in regions of strong inhomogeneities in density or magnetic field (e. g., the border between open and closed magnetic field lines). Using a 3-dimensional Magnetohydrodynamics (MHD) model, we calculate the surface Alfven wave damping contribution between 1-4 solar radii, the region of interest for both acceleration and coronal heating. We consider waves with frequencies lower than those that are damped in the chromosphere and on the order of those dominating the heliosphere. In the region between open and closed field lines, within a few solar radii of the surface, no other major source of damping has been suggested for the low frequency waves we consider here. This work is the first to study surface Alfven waves in a 3D environment without assuming a priori a geometry of field lines or magnetic and density profiles. We determine that waves with frequencies >2.8x10^-4 Hz are damped between 1-4 solar radii. In quiet sun regions, surface Alfven waves are damped at further distances compared to active regions, thus carrying additional wave energy into the corona. We compare the surface Alfven wave contribution to the heating by a variable polytropic index and find that it an order of magnitude larger than needed for quiet sun regions. For active regions the contribution to the heating is twenty percent. As it has been argued that a variable gamma acts as turbulence, our results indicate that surface Alfven wave damping is comparable to turbulence in the lower corona. This damping mechanism should be included self consistently as an energy driver for the wind in global MHD models.Comment: Accepted to ApJ (scheduled September '09), 22 pages, 8 figure

    Global MHD Simulations of the Time-Dependent Corona

    Full text link
    We describe, test, and apply a technique to incorporate full-sun, surface flux evolution into an MHD model of the global solar corona. Requiring only maps of the evolving surface flux, our method is similar to that of Lionello et al. (2013), but we introduce two ways to correct the electric field at the lower boundary to mitigate spurious currents. We verify the accuracy of our procedures by comparing to a reference simulation, driven with known flows and electric fields. We then present a thermodynamic MHD calculation lasting one solar rotation driven by maps from the magnetic flux evolution model of Schrijver & DeRosa (2003). The dynamic, time-dependent nature of the model corona is illustrated by examining the evolution of the open flux boundaries and forward modeled EUV emission, which evolve in response to surface flows and the emergence and cancellation flux. Although our main goal is to present the method, we briefly investigate the relevance of this evolution to properties of the slow solar wind, examining the mapping of dipped field lines to the topological signatures of the "S-Web" and comparing charge state ratios computed in the time-dependently driven run to a steady state equivalent. Interestingly, we find that driving on its own does not significantly improve the charge states ratios, at least in this modest resolution run that injects minimal helicity. Still, many aspects of the time-dependently driven model cannot be captured with traditional steady-state methods, and such a technique may be particularly relevant for the next generation of solar wind and CME models

    The 4.2 ka event in the central Mediterranean: new data from a Corchia speleothem (Apuan Alps, central Italy)

    Get PDF
    Abstract. We present new data on the 4.2 ka event in the central Mediterranean from Corchia Cave (Tuscany, central Italy) stalagmite CC27. The stalagmite was analyzed for stable isotopes (δ13C and δ18O) and trace elements (Mg, U, P, Y), with all proxies showing a coherent phase of reduced cave recharge between ca. 4.5 and 4.1 ka BP. Based on the current climatological data on cyclogenesis, the reduction in cave recharge is considered to be associated with the weakening of the cyclone center located in the Gulf of Genoa in response to reduced advection of air masses from the Atlantic during winter. These conditions, which closely resemble a positive North Atlantic Oscillation (NAO) type of configuration, are associated with cooler and wetter summers with reduced sea warming, which reduced the western Mediterranean evaporation during autumn–early winter, further reducing precipitation

    The new Checklist of the Italian Fauna: marine Mollusca.

    Get PDF
    The mollusc fauna of the Mediterranean Sea is still considered as the best-known marine mollusc fauna in the world. The previous modern checklists of marine Mollusca were produced by joint teams of amateurs and professionals. During the last years the Italian Society of Malacology (Società Italiana di Malacologia – S.I.M.) maintained an updated version of the Mediterranean checklist, that served as the backbone for the development of the new Italian checklist. According to the current version (updated on April 1st, 2021), 1,777 recognised species of marine molluscs are present in the Italian Economic Exclusive Zone, including also the Tyrrhenian coasts of Corsica and the continental shelf of the Maltese archipelago. The new checklist shows an increase of 17% of the species reported in the 1995 Checklist. This is largely (yet not solely) due to the new wave of studies based on Integrative Taxonomy approaches. A total of 135 species (7.6%) are strictly endemic to the Italian waters; 44 species (2.5%) are alien and correspond to the 28% of the Mediterranean alien marine molluscs. All eight extant molluscan classes are represented. The families represented in the Italian fauna are 307, an increase of 14.6% from the first checklist, partly due to new records and partly to new phylogenetic systematics. Compared with the whole Mediterranean malacofauna, the Italian component represents 71% in species and 61% in families, which makes it a very remarkable part of the Mediterranean fauna

    The Coupled Evolution of Electrons and Ions in Coronal Mass Ejection-driven shocks

    Full text link
    We present simulations of coronal mass ejections (CMEs) performed with a new two-temperature coronal model developed at the University of Michigan, which is able to address the coupled thermodynamics of the electron and proton populations in the context of a single fluid. This model employs heat conduction for electrons, constant adiabatic index (γ = 5/3), and includes Alfvén wave pressure to accelerate the solar wind. The Wang-Sheeley-Arge empirical model is used to determine the Alfvén wave pressure necessary to produce the observed bimodal solar wind speed. The Alfvén waves are dissipated as they propagate from the Sun and heat protons on open magnetic field lines to temperatures above 2 MK. The model is driven by empirical boundary conditions that includes GONG magnetogram data to calculate the coronal field, and STEREO /EUVI observations to specify the density and temperature at the coronal boundary by the Differential Emission Measure Tomography method. With this model, we simulate the propagation of fast CMEs and study the thermodynamics of CME-driven shocks. Since the thermal speed of the electrons greatly exceeds the speed of the CME, only protons are directly heated by the shock. Coulomb collisions low in the corona couple the protons and electrons allowing heat exchange between the two species. However, the coupling is so brief that the electrons never achieve more than 10% of the maximum temperature of the protons. We find that heat is able to conduct on open magnetic field lines and rapidly propagates ahead of the CME to form a shock precursor of hot electrons.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98571/1/0004-637X_756_1_81.pd
    • …
    corecore