380 research outputs found

    Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyaluronan accumulation correlates with the degree of malignancy in many solid tumor types, including malignant endometrial carcinomas. To elucidate the mechanism of hyaluronan accumulation, we examined the expression levels of the hyaluronan synthases (<it>HAS1</it>, <it>HAS2 </it>and <it>HAS3</it>) and hyaluronidases (<it>HYAL1 </it>and <it>HYAL2</it>), and correlated them with hyaluronan content and HAS1-3 immunoreactivity.</p> <p>Methods</p> <p>A total of 35 endometrial tissue biopsies from 35 patients, including proliferative and secretory endometrium (n = 10), post-menopausal proliferative endometrium (n = 5), complex atypical hyperplasia (n = 4), grade 1 (n = 8) and grade 2 + 3 (n = 8) endometrioid adenocarcinomas were divided for gene expression by real-time RT-PCR, and paraffin embedded blocks for hyaluronan and HAS1-3 cytochemistry.</p> <p>Results</p> <p>The mRNA levels of <it>HAS1-3 </it>were not consistently changed, while the immunoreactivity of all HAS proteins was increased in the cancer epithelium. Interestingly, <it>HAS3 </it>mRNA, but not HAS3 immunoreactivity, was increased in post-menopausal endometrium compared to normal endometrium (p = 0.003). The median of <it>HYAL1 </it>mRNA was 10-fold and 15-fold lower in both grade 1 and grade 2+3 endometrioid endometrial cancers, as compared to normal endometrium (p = 0.004-0.006), and post-menopausal endometrium (p = 0.002), respectively. <it>HYAL2 </it>mRNA was also reduced in cancer (p = 0.02) and correlated with <it>HYAL1</it> (r = 0.8, p = 0.0001). There was an inverse correlation between <it>HYAL1 </it>mRNA and the epithelial hyaluronan staining intensity (r = -0.6; P = 0.001).</p> <p>Conclusion</p> <p>The results indicated that <it>HYAL1 </it>and <it>HYAL2 </it>were coexpressed and significantly downregulated in endometrioid endometrial cancer and correlated with the accumulation of hyaluronan. While immunoreactivity for HASs increased in the cancer cells, tumor mRNA levels for <it>HAS</it>s were not changed, suggesting that reduced turnover of HAS protein may also have contributed to the accumulation of hyaluronan.</p

    Decline after immobilisation and recovery after remobilisation of synovial fluid IL1, TIMP, and chondroitin sulphate levels in young beagle dogs

    Get PDF
    OBJECTIVE: To monitor the concentration of markers of cartilage and synovium metabolism in the knee (stifle) joint synovial fluid of young beagles subjected to immobilisation and subsequent remobilisation.METHODS: The right hind limb of 17 dogs was immobilised in flexion for 11 weeks. Simultaneously, the contralateral left knee was exposed to increased weight bearing. The remobilisation period lasted 50 weeks. Litter mates served as controls. The concentration in joint lavage fluid of interleukin 1 (IL1) was measured by immunoassay, the activity of phospholipase A2 (PLA2) was determined by an extraction method, chondroitin sulphate (CS) concentration by precipitation with Alcian blue, hyaluronan (HA) by an ELISA-like assay using biotinylated HA-binding complexes, matrix metalloproteinase 3 (MMP-3), and tissue inhibitor of metalloproteinases 1 (TIMP-1) by sandwich ELISA, and synovitis was scored by light microscopy.RESULTS: Synovitis or effusion was absent in all experimental and control groups. Immobilisation decreased the joint lavage fluid levels of IL1 (p<0.05), TIMP (p< 0.05), and the concentration of CS down to 38 (p<0.05) in comparison with untreated litter mates with normal weight bearing. Immobilisation did not affect the activity of PLA2, or the concentration of MMP-3 or HA in synovial fluid. Joint remobilisation restored the decreased concentrations of markers to control levels. Increased weight bearing did not change the concentrations of markers in comparison with the control joints with normal weight bearing.CONCLUSIONS: 11 weeks joint immobilisation decreased the concentration of markers of cartilage and synovium metabolism in the synovial fluid, and remobilisation restored the concentrations to control levels. The changes in joint metabolism induced by immobilisation, as reflected by the markers, are thus different from those found in osteoarthritis, where increased levels of these markers are associated with enhanced degradation and synthesis. These findings suggest that the change induced in joint metabolism by immobilisation is reversible in its early stages

    Expression of Hyaluronan Synthases (HAS1–3) and Hyaluronidases (HYAL1–2) in Serous Ovarian Carcinomas: Inverse Correlation between HYAL1 and Hyaluronan Content

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyaluronan, a tumor promoting extracellular matrix polysaccharide, is elevated in malignant epithelial ovarian tumors, and associates with an unfavorable prognosis. To explore possible contributors to the accumulation of hyaluronan, we examined the expression of hyaluronan synthases (<it>HAS1</it>, <it>HAS2 </it>and <it>HAS3</it>) and hyaluronidases (<it>HYAL1 </it>and <it>HYAL2</it>), correlated with hyaluronidase enzyme activity hyaluronan content and HAS1–3 immunoreactivity.</p> <p>Methods</p> <p>Normal ovaries (n = 5) and 34 serous epithelial ovarian tumors, divided into 4 groups: malignant grades 1+2 (n = 10); malignant grade 3 (n = 10); borderline (n = 4) and benign epithelial tumors (n = 10), were analyzed for mRNA by real-time RT-PCR and compared to hyaluronidase activity, hyaluronan staining, and HAS1–3 immunoreactivity in tissue sections of the same specimens.</p> <p>Results</p> <p>The levels of <it>HAS2 </it>and <it>HAS3 </it>mRNA (<it>HAS1 </it>was low or absent), were not consistently increased in the carcinomas, and were not significantly correlated with HAS protein or hyaluronan accumulation in individual samples. Instead, the median of <it>HYAL1 </it>mRNA level was 69% lower in grade 3 serous ovarian cancers compared to normal ovaries (P = 0.01). The expression of <it>HYAL1</it>, but not <it>HYAL2</it>, significantly correlated with the enzymatic activity of tissue hyaluronidases (r = 0.5; P = 0.006). An inverse correlation was noted between <it>HYAL1 </it>mRNA and the intensity of hyaluronan staining of the corresponding tissue sections (r = -0.4; P = 0.025).</p> <p>Conclusion</p> <p>The results indicate that in serous epithelial ovarian malignancies <it>HAS </it>expression is not consistently elevated but <it>HYAL1 </it>expression is significantly reduced and correlates with the accumulation of hyaluronan. (233 words)</p

    FANCM mutation c.5791C > T is a risk factor for triple-negative breast cancer in the Finnish population

    Get PDF
    The FANCM c.5101C > T nonsense mutation was previously found to associate with breast cancer in the Finnish population, especially among triple-negative cases. Here, we studied the prevalence of three other FANCM variants: c.5791C > T, which has been reported to predispose to familial breast cancer, and the c.4025_4026delCT and c.5293dupA variants recently identified in Finnish cancer patients. We genotyped the FANCM c.5791C > T mutation in 4806 invasive breast cancer patients, including BRCA1/2 mutation negative familial cases and unselected cases, and in 2734 healthy population controls from four different geographical areas of Finland. The association of the mutation with breast cancer risk among patient subgroups was statistically evaluated. We further analyzed the combined risk associated with c.5101C > T and c.5791C > T mutations. We also genotyped 526 unselected ovarian cancer patients for the c.5791C > T mutation and 862 familial breast cancer patients for the c.4025_4026delCT and c.5293dupA variants. The frequency of the FANCM c.5791C > T mutation was higher among breast cancer cases than in controls (OR 1.94, 95% CI 0.87-4.32, P = 0.11), with a statistically significant association with triple-negative breast cancer (OR 5.14, 95% CI 1.65-16.0, P = 0.005). The combined analysis for c.5101C > T and c.5791C > T carriers confirmed a strong association with breast cancer (OR 1.86, 95% CI 1.32-2.49, P = 0.0002), especially among the triple-negative patients (OR 3.08, 95% CI 1.77-5.35, P = 0.00007). For the other variants, only one additional c.4025_4026delCT carrier and no c.5293dupA carriers were observed. These results support the role of FANCM as a breast cancer susceptibility gene, particularly for triple-negative breast cancer.Peer reviewe

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    The evolution of cellular deficiency in GATA2 mutation.

    Get PDF
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageConstitutive heterozygous GATA2 mutation is associated with deafness, lymphedema, mononuclear cytopenias, infection, myelodysplasia (MDS), and acute myeloid leukemia. In this study, we describe a cross-sectional analysis of 24 patients and 6 relatives with 14 different frameshift or substitution mutations of GATA2. A pattern of dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency (DCML deficiency) with elevated Fms-like tyrosine kinase 3 ligand (Flt3L) was observed in all 20 patients phenotyped, including patients with Emberger syndrome, monocytopenia with Mycobacterium avium complex (MonoMAC), and MDS. Four unaffected relatives had a normal phenotype indicating that cellular deficiency may evolve over time or is incompletely penetrant, while 2 developed subclinical cytopenias or elevated Flt3L. Patients with GATA2 mutation maintained higher hemoglobin, neutrophils, and platelets and were younger than controls with acquired MDS and wild-type GATA2. Frameshift mutations were associated with earlier age of clinical presentation than substitution mutations. Elevated Flt3L, loss of bone marrow progenitors, and clonal myelopoiesis were early signs of disease evolution. Clinical progression was associated with increasingly elevated Flt3L, depletion of transitional B cells, CD56(bright) NK cells, naïve T cells, and accumulation of terminally differentiated NK and CD8(+) memory T cells. These studies provide a framework for clinical and laboratory monitoring of patients with GATA2 mutation and may inform therapeutic decision-making.Lymphoma and Leukaemia Research British Society of Hematology Bright Red George Walker Trust Wellcome Trus
    corecore