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Key Points

• Diverse patient groups with
GATA2 mutation develop
mononuclear cytopenia and
elevated Flt3 ligand.

• Progressive cytopenias, rising
Flt3 ligand, and terminal
differentiation of lymphoid
cells accompany clinical
progression.

Constitutive heterozygous GATA2 mutation is associated with deafness, lymphedema,

mononuclear cytopenias, infection, myelodysplasia (MDS), and acute myeloid leukemia.

In this study, we describe a cross-sectional analysis of 24 patients and 6 relatives with

14 different frameshift or substitution mutations of GATA2. A pattern of dendritic cell,

monocyte, B, and natural killer (NK) lymphoid deficiency (DCML deficiency) with

elevated Fms-like tyrosine kinase 3 ligand (Flt3L) was observed in all 20 patients

phenotyped, including patients with Emberger syndrome, monocytopenia with Myco-

bacterium avium complex (MonoMAC), and MDS. Four unaffected relatives had a normal

phenotype indicating that cellular deficiency may evolve over time or is incompletely

penetrant, while 2 developed subclinical cytopenias or elevated Flt3L. Patients with

GATA2 mutation maintained higher hemoglobin, neutrophils, and platelets and were

younger than controls with acquired MDS and wild-type GATA2. Frameshift mutations

were associated with earlier age of clinical presentation than substitution mutations.

Elevated Flt3L, loss of bonemarrowprogenitors, and clonalmyelopoiesis were early signs of disease evolution. Clinical progression

was associated with increasingly elevated Flt3L, depletion of transitional B cells, CD56bright NK cells, naı̈ve T cells, and accumulation

of terminally differentiatedNK andCD81memory T cells. These studies provide a framework for clinical and laboratorymonitoring of

patients with GATA2 mutation and may inform therapeutic decision-making. (Blood. 2014;123(6):863-874)

Introduction

Constitutive heterozygous mutation of the GATA2 gene causes
a complex disorder of hematopoiesis with variable extramedullary
defects. We have previously characterized the loss of mononuclear
cells that occurred in 4 patients with immunodeficiency as a syn-
drome of dendritic cell (DC), monocyte, B, and natural killer (NK)
lymphoid (DCML) deficiency.1,2 Others have reported cytopenias in
patients with various clinical syndromes of GATA2mutation. These
include monocytopenia with Mycobacterium avium complex
(monoMAC)3-5; lymphedema, deafness, and myelodysplasia (MDS)

(Emberger syndrome)6,7; and familial MDS/acute myeloid leukemia
(AML).8-11 Recent work suggests that monoMAC, lymphedema, and
familial MDS/AML are all facets of GATA2 mutation that may occur
heterogeneously,9,12 even within a single pedigree.13 Some historical
cases of familial AML are now also known to be due to GATA2
mutation.14-16 It is unknown whether failure of mononuclear cell
development is a consequence of GATA2 mutation in all patient
groups. In particular, hereditary AML may arise without a preceding
“accessory” hematopoietic phenotype.8 Also, extramedullary
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complications such as lymphedema may or may not develop
independently of hematopoietic failure.9,17,18

A wide range of genetic defects has been described in theGATA2
locus including deletions, regulatory mutations, frameshift muta-
tions, and substitutions. Extramedullary developmental defects are
associated with large deletions.9 Cohorts with lymphedema are
enriched for frameshift mutations,7 while hereditary AML has been
described particularly in families with substitutions clustering in the
second zinc finger.8-10 These phenotypes are likely to be partially
penetrant.9

Up to 50% of individuals with GATA2 mutation develop MDS
associated with fibrosis and megakaryocyte dysplasia.4,5,10,11,19

However, many patients present with clinical problems prior to
their meeting the standard criteria for MDS. Monocytopenia is
a vital clue,1,3 but mild chronic neutropenia20 and NK deficiency21

are also associated with GATA2 mutation. A more precise un-
derstanding of the evolution of cellular deficiency and the progres-
sion of disease may further assist in the recognition and clinical
management of this disorder.

It has previously been reported that Fms-like tyrosine kinase 3
ligand (Flt3L) is elevated in patients with DCML deficiency.1 Flt3L
is an important factor in DC development, but elevated levels have
also been reported in Fanconi and aplastic anemia suggesting that
hematopoietic stress is a trigger.22,23 Further evaluationmay indicate
whether this is a useful marker for diagnosis and monitoring of
GATA2 mutation.

The risk of infectious complications in GATA2 mutation is
difficult to predict, but frequently remains low until the third or fourth
decade. It appears from unremarkable childhood case histories, nor-
mal class-switched immunoglobulin, and a grossly intact T-cell com-
partment that the immune system is competent for sufficiently long to
establish a level of immunologic memory. Nonetheless, the existence
of a premorbid state without cytopenia has not been firmly es-
tablished. Indeed, several patients have been characterized with long
periods of cytopenia.1,3 Loss of CD56bright NK cells has been re-
ported,21 but the B-cell compartment and remaining T cells have not
been examined in detail.

It has been suggested that GATA2 mutation leads to poor risk
AML.8,11,24 Although hematopoietic stem-cell transplantation is
effective in treatingMDS and in resolving life-threatening infectious
complications,25 a better understanding of the trajectory of GATA2
disease is required to optimize the treatment strategy for patients.

In this study, we present an analysis of a European cohort of
patients and their relatives with GATA2 mutation from a range of
clinical backgrounds, describing in detail the evolution of cellular
deficiency, the utility of Flt3L in diagnosing and monitoring disease
progression, and the effects of failingmononuclear cell development
upon peripheral lymphoid homeostasis.

Methods

Patients

Patients with GATA2mutation were referred from a wide range of clinicians
suspecting a GATA2-related disorder. There were no specific inclusion
criteria and all patients found to haveGATA2mutationwere reported. Patients
with acquired MDS (World Health Organization classification: refractory
cytopenia andmultilineage dysplasia)were recruited from a local hematology
ambulatory clinic. All MDS patients were symptomatic and some required
transfusion support, but none had received high-dose cytoreductive therapy
prior to testing. Direct sequencing confirmed wild-type (WT)GATA2 coding

sequence in all cases. Patients with primary immunodeficiency disease (PID)
were a heterogenous groupwith a history of suspected immunodeficiency and
variable cellular deficiencies, were referred for investigation of possible
GATA2mutation but were found not to have a DCML deficiency phenotype
or aGATA2mutation. This population served as controls for further analyses
performed. Blood, skin, and bonemarrow (BM) aspirate surplus to diagnostic
requirementwas collected. Systematic collection of patientmaterial, analysis,
and collation of clinical details for publicationwas approved by theNewcastle
and North Tyneside Research Ethics Committee 1 (Reference 08/H0906/72).
Informed consent was obtained in accordance with the Declaration of
Helsinki.

Flow cytometry

DCML profiling was performed as previously described.1 Antibodies are
listed in supplemental Table 1 on the Blood Web site. Absolute cell counts
were determined by Trucount analysis (BD Biosciences). Flow cytometry
data were collected using an LSRII cytometer (BDBiosciences) and analyzed
with FlowJo software (Tree Star, Ashland, OR).

DNA sequencing

Peripheral blood was used as the source of DNA except for 3.II.6 (frozen
muscle), 5.I.1, 7.I.1, 7.II.1, and 8.I.3 (dermal fibroblasts). GenomicDNAwas
extracted using the QIAamp DNA Mini Kit (QIAGEN), while polymerase
chain reaction (PCR) amplification and Sanger sequencing was performed
using primers and conditions described previously.2

Analysis of clonality

Genomic DNA was extracted with QIAamp DNAMini Kit and genotyping of
exonic single nucleotide polymorphisms from 3X-chromosome genes (MPP1:
G/T, FHL1: G/A, and IDS: C/T) was determined using TaqMan allele-
discrimination assays on an Applied Biosystems 7500 Sequence Detection
System. Total RNA was isolated from neutrophil pellets and peripheral
blood mononuclear cells (PBMCs) using RNeasy Micro Kit (QIAGEN),
and used for assessment of clonality. Quantitative allele-specific sup-
pressive PCR was performed on a sequence detection system (7500
platform) and allele frequency of expressed exonic single nucleotide
polymorphisms was calculated as previously described.26

Serum biomarker screening and ELISA

The quantities of 117 serum proteins from 16 patients with GATA2mutation
and 10 healthy adult controls were measured with MILLIPLEX Multiplex
Assays (Millipore, Billerica, MA): Cytokine/Chemokine Panels I-III, Cancer
Biomarker I-II, and Circulating Cytokine Receptor. Multiplex assays were
processed on a MAGPIX Plate Reader (Luminex, Austin, TX), and analyzed
with MILLIPLEX Analyst 5.1 software (Millipore). All samples were
performed in duplicate. Significantly elevated markers were reanalyzed by
enzyme-linked immunosorbent assay (ELISA) across the whole cohort.
Serum ELISA was performed with quantikine human Flt3/Flk-2 ligand
immunoassay, quantikine human epidermal growth factor (EGF) immuno-
assay, quantikine human soluble CD40 ligand (CD40L) immunoassay,
quantikine human granulocyte-macrophage colony-stimulating factor (GM-
CSF) immunoassay, and quantikine fibroblast growth factor (FGF) basic
immunoassay (R&D Systems).

Real-time quantitative PCR

Total RNAwas extracted using the RNeasyMicro Kit and treated with Dnase
I. Complementary (cDNA) was synthesized using RevertAid H Minus First
Strand cDNA Synthesis Kit (Thermo Scientific). Real-time PCR was per-
formed with TaqMan Gene Expression Master Mix, and gene expression
assays for FLT3LG (Hs00181740_m1) and glyceraldehyde-3-phosphate de-
hydrogenase (4352934E; Life Technologies) with Applied Biosystems 7900HT
Fast Real-Time PCR System. Relative quantification of the messenger RNA
(mRNA) levels was performed using glyceraldehyde-3-phosphate dehydroge-
nase as the reference.
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Statistical analysis

Analysis of variance with BonferroniMultiple Comparisons Test was used to
compare groups in most analyses. Cell count data were obviously skewed in
GATA2 deficiency, therefore, nonparametric tests were preferred (Mann-
Whitney or Kruskal-Wallis with Dunn’s Multiple Comparison Test).

Results

Comparison of GATA2 mutation with acquired MDS

The cohort of 30 patients with GATA2 mutation comprised of 16
index cases and 14 relatives. These included 4 with Emberger syn-
drome, 6 with “monoMAC” (3 also with MDS), 8 with MDS, 6 with
other clinical syndromes, and 6 asymptomatic patients. The 6 asymp-
tomatic patients were all related to one or more persons who had
developed MDS due to point mutation of the second zinc finger
(Table 1). AML had been diagnosed historically in several families,
but none of the patients reported here had developed leukemia.

The most common early complications were documented from
a review of the case notes, and a simple clinical score was derived
(Table 1). We focused on early complications because management
is less certain at this stage thanwhen patients have already developed
MDS. MDS, lymphedema, and solid malignancy were recorded, but
were excluded from the clinical score.

Mononuclear cytopenia, in particular the loss of DCs, has not
been systematically investigated in all presentations of GATA2
mutation. Furthermore, it is not known how distinct the phenotype
of DCML deficiency is from cytopenias that occur in acquired MDS
with WT GATA2. To explore these issues, we performed an ex-
tended mononuclear profile on 26 of 30 patients with GATA2
mutation, including 20 symptomatic patients with monoMAC,
Emberger syndrome, or MDS, and 6 asymptomatic relatives.
DCML-deficiency was evident in all 20 symptomatic cases, including
representative patients with monoMAC, Emberger syndrome, and
MDS (Figure 1). We then compared 18 patients (with at least one
clinical manifestation) with acquired MDS patients receiving ambu-
latory care who were known to beGATA2WT (n5 12). Patients with

Table 1. Patient cohort

Number Kindred Age* cDNA Protein HPV 5 1 Myco 5 1 URTI 5 1 Lung 5 1 AI 5 1 Clinical Score MDS Lymph Cancer

1 1.I.1† 12 c.599_600insG G200fs 1 1 2

2 2.I.1†§ 26 1061 C.T T354M 1 1 2

3|| 3.II.6§ 34 1192 C.T R398W 1 1 2 1 a

4 3.III.1† 22 1192 C.T R398W 1 1 2 b

5 3.III.3 26 1192 C.T R398W 0

6 4.I.1† 18 c.1018-1 G.T 4340-381 1 1 1 3

7 5.I.1§ 40 1192 C.T R398W 1 1 1 3 1

8 6.I.1 18 c.594delG G199fs 1 1 1 1 4 1

9 6.II.1 17 c.594delG G199fs 1 1 1

10 6.II.2 13 c.594delG G199fs 1 1

11|| 7.I.1§ 10 c.318_319insT S106fs 1 1 2

12|| 7.II.1§ 10 c.318_319insT S106fs 1 1 1 c

13 8.I.2 62 1193 G.A R398Q 0

14|| 8.I.3 25 1193 G.A R398Q 1 1 mono 7

15 8.II.1 36 1193 G.A R398Q 1 1 1 3

16 8.II.4 32 1193 G.A R398Q 0

17 8.II.5 29 1193 G.A R398Q 0

18 9.III.1‡ 31 1061 C.T T354M 1 1 1 3 1

19 9.III.2‡ 29 1061 C.T T354M 1 1

20 9.III.3‡ 22 1061 C.T T354M 0

21 9.III.4‡ 17 1061 C.T T354M 0

22 9.III.5‡ 17 1061 C.T T354M 1 1 tri 8

23 10.I.1 22 c.1114 G.A A372T 1 1 2

24 11.I.1 8 c.257_258delGC C85fs 1 1 mono 7

25 12.I.1§ 22 c.1018-1 G.A 4340-381 1 1 1 1 4 1 d

26 13.I.1 19 c.735_736insC P245fs 1 1

27 14.I.1 60 c.599_600insG G200fs 1 1 2 tri 8

c.599_600insG G200fs

28 14.II.2 30 c.1168_1170del1AAG 390delK 1 1 1

29 15.I.1 4 1081 C.T R361C 1 1 2 1 1 e

30 16.I.1 9 c.1081-3_1031del17 A341fs 1 1 1 f

A survey of the most common clinical features of the cohort is presented. HPV (persistent infection of hands, feet, or perineum with HPV); Myco (any history of

mycobacterial infection); URTI (more than 3 episodes of recurrent bacterial sinusitis, otitis, or other URTI); Lung (loss of lung volume or transfer factor,80% predicted, history

of bronchiectasis, chronic bronchitis, more than one episode of pneumonia, radiologically or pathologically confirmed pulmonary alveolar proteinosis); AI (autoimmunity:

arthritis, panniculitis, or autoimmune cytopenia); MDS (WHO: refractory cytopenia with multilineage dysplasia); Lymph (lymphedema); and Cancer (nonhematopoietic

malignancy). The clinical score was derived by giving 1 point for each of the categories: HPV, Myco, URTI, Lung, and AI. Cytogenetics are indicated in the MDS column: mono

7, monosomy 7, tri 8, and trisomy 8. Lowercase letters indicate solid malignancy, as follows: a, cervical intra-epithelial dysplasia 3; b, ano-genital dysplasia with vulval

intra-epithelial neoplasia 3; c, cervical intra-epithelial dysplasia 3; d, schwannoma/neuroma; e, cervical intra-epithelial dysplasia 3 and squamous carcinoma of vulva; and

f, ano-genital dysplasia. Blank spaces indicate the absence of a clinical feature.

*Age at clinical presentation or detection of mutation, if asymptomatic.

†Patients published.2

‡Pedigree previously described.14

§Deceased.

||Genotype and clinical phenotype only.
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MDSwere significantly older (median age5 65 years, range 42 to 83
years vs median age5 20 years, range 4 to 60 years) and had reduced
hemoglobin (Hb), neutrophils, and platelets comparedwith thosewith
GATA2 mutation (Figure 2A).

Patients with GATA2 mutation often had normal hematologic
parameters: 9 of 18 (50%), 11 of 18 (61%), and 9 of 18 (50%) hadHb,
neutrophils, and platelets, respectively, within the reference range. A
total of 7 of 18 (39%) were normal for all three parameters. DC,
monocyte, B cell, and NK cell counts were significantly reduced in
all symptomatic carriers of GATA2 mutation (Figure 2B-D).

Interestingly, patients with acquired MDS also had mild mono-
nuclear cytopenias of plasmacytoid DCs (pDCs), and both classical
and nonclassical monocytes. There were trends for lower myeloid
DCs (mDCs), B cells, and NK cells in MDS, but this did not achieve
significance after adjustment for multiple comparisons.

Genotype-phenotype correlations

Although GATA2 mutations are diverse and we screened all the
promoters, exons, intron 5 enhancer, and 39 untranslated regions in
this cohort, we detected only frameshift mutations in the coding
region 59 to the second zinc finger, or substitutions (plus one
inframe deletion) in the second zinc finger of GATA2 (supple-
mental Figure 1). We did not detect larger gene deletions as have
been described in patients with congenital defects, which might
have been under-represented in our cohort. Common clinical mani-
festations showed little difference between the 2 genotype groups
(Figure 2E). Among symptomatic patients (n5 24; 11 frameshift and
13 substitution mutations), a higher proportion of frameshift mu-
tations occurred in lymphedema (3 of 13 vs 1 of 11), while
substitutionmutations weremore prevalent in theMDSgroup (7 of 11
vs 5 of 13). Neither trait achieved significance in Fisher’s exact test
with this relatively small number of patients. The clinical score
derived from Table 1 showed a slightly higher but nonsignificant
weighting in the frameshift group (Figure 2F). The age of pre-
sentation was younger in the frameshift group compared with the
substitution group (median age 5 18 vs 26 years; P , .05)
(Figure 2G).

Evolution of mononuclear cytopenia in asymptomatic relatives

with GATA2 mutation

We identified 3 pedigrees with mutations: R398W, R398Q, and
T354M containing 6 asymptomatic relatives (Figure 3A). Two

developed cytopenia and elevation of Flt3L, even though they
were unaffected clinically (clinical score 5 0), but 4 cases (#13,
#16, #17, and #20) remained phenotypically normal (Figure 3B-C).
Sequentialmonitoring of #5 showed declining cell counts over 3 years
with progressive elevation of Flt3L and circulatingCD341progenitors
(Figure 3D). Despite normal peripheral cell counts and unremarkable
BMhistology (not shown),flowcytometry revealed that the progenitor
compartment was already depleted of B and NK cells, multilymphoid
progenitor (MLP), and granulocyte-macrophage progenitor (GMP)
fractions (Figure 3E).

The early elevation of Flt3L and the loss of specific progenitors
suggested that hematopoiesis was already under stress. To corroborate
this, clonality testing was performed by looking for nonrandom X
inactivation in female patients, as previously described.26 Surpris-
ingly, this revealed a .75% bias toward one allele, consistent with
clonal hematopoiesis, in all neutrophil samples and most PBMCs
tested (Figure 3F). PBMC clonality was always less marked than that
of neutrophils, and in 2 patients with the lowest neutrophil clonal bias,
PBMCs remained evenly balanced. T cells are a major component of
PBMCs, especially in these patients, and the lag in PBMC clonality
presumably reflects the slow turnover of peripheral T cells from
BM-derived precursors.

Although hematopoiesis appears clonal, this does not explain the
selective loss of MLP, GMP, and mononuclear cells associated with
GATA2 mutation. Seeking evidence that GATA2 had a direct role in
specifying the development of MLP, GMP, or their progeny, we
attempted to knock-down GATA2 expression in hematopoietic stem
cells using short hairpin RNA-expressing lentiviral vectors. How-
ever, this failed to alter the generation of hematopoietic progenitors
or balance of lymphoid/myeloid output using a xenotransplant readout
(supplemental Figure 2).

Elevated Flt3L is a marker of GATA2 mutation

It was previously reported that GATA2 mutation is associated with
elevated serum Flt3L.1 Comparison of patients withGATA2mutation
at different clinical stages (n 5 24) with relatives who did not carry
GATA2 mutation (n 5 13), patients with acquired MDS and WT
GATA2 (n 5 11) or PID (n 5 11) indicated significantly elevated
Flt3L for symptomaticGATA2mutation (Figure 4A). Compared with
GATA2WT controls, 2 of the 6 relatives with a clinical score of 0 had
supranormal Flt3L (.200 pg/mL). Within the symptomatic GATA2
cohort (clinical score 5 1 to 4), the development of MDS was

Figure 1. Mononuclear cell profiles of patients with

Emberger syndrome, monoMAC, and familial MDS

associated with GATA2mutation. Examples of mono-

nuclear profiling in familial MDS (#18; T354M), monoMAC

(#25; del340-381), and Emberger syndrome (#30;

A341fs) showing that a DCML-deficiency phenotype

may be associated with diverse clinical manifesta-

tions and different GATA2 mutations. Populations:

(1) CD141 monocyte; (2) CD161 monocyte; (3) pDC;

(4) CD341 progenitors; (5) CD1411 mDC; (6) CD1c1

mDC; (7) B cells; and (8) NK cells. Note expansion

of CD341 progenitors.

866 DICKINSON et al BLOOD, 6 FEBRUARY 2014 x VOLUME 123, NUMBER 6

For personal use only.on June 3, 2016. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


associated with lower Flt3L, but still above the level seen in acquired
MDS patients (Figure 4B). When patients with MDS were removed,
advancing clinical stage was clearly associated with progressively
increasing FLt3L (Figure 4C). Together, these results suggest a
biphasic relationship, where Flt3L becomes progressively elevated
but then declines as MDS develops.

In all patients, progressive mononuclear cytopenias correlated
with clinical stage (Figure 4D). The relationships between cytopenia,
advancing clinical stage, and Flt3L were evident in all mononuclear
fractions (Figure 4E). Flt3L mRNA was increased in the PBMCs of
patients withGATA2mutation and correlated with the percentage of
T cells in PBMCs, consistent with T cells being one source of Flt3L

Figure 2. Comparison ofGATA2-mutated patients with MDS patients and genotype-phenotype correlations. (A-D) Comparison of controls (n5 21), patients with MDS

(n 5 12), and patients with symptomatic GATA2 mutation (n 5 18). (A) Automated blood counts. (B-D) DCs, monocytes, and lymphocyte subsets by Trucount analysis.

Analysis was performed as previously described.1 (E) Summary of clinical features among symptomatic carriers of GATA2 mutation by genotype (11 frameshift and 13

substitutions). (F) Profile of clinical score as defined in Table 1 according to genotype. (G) Age at presentation by genotype. *P , .05; **P , .01; ***P , .001. C, controls (or

reference range); HPV, human papilloma virus; mono, monocyte; PAP, pulmonary alveolar proteinosis; URTI, upper respiratory tract infection.
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Figure 3. Asymptomatic carriers of GATA2 mutation may develop cellular deficiency, elevated Flt3L, loss of BM progenitors, and clonal myelopoeisis. (A) Three

pedigrees identified (mutation indicated) containing asymptomatic relatives (clinical core 5 0), carrying GATA2 mutation (open symbols, arrowed). Gray symbols identify 2

patients with either elevated Flt3L (.200 pg/ml) or cytopenia. Filled symbols indicate affected patients with mutation (clinical score 5 1 to 4). (B) DC, monocyte, and

lymphocyte profiles of patient #5, 1 of 3 healthy carriers of GATA2 mutation showing a normal cellular phenotype at the first point of analysis in 2010. Populations: (1) CD141

monocyte; (2) CD161 monocyte; (3) pDC; (4) CD341 progenitors; (5) CD1411 mDC; (6) CD1c1 mDC; (7) B cell; (8) T cell; and (9) NK cell. (C) Summary of DC and monocyte

counts relative to reference ranges for the asymptomatic carriers. Case #5 (filled circle) is shown at first analysis in 2010. Case #21 (filled square) already has cytopenia. (D)

Detailed analysis of case #5 showing the loss of cells and rising Flt3L over a 3-year period. (E) BM analysis of case #5 showing loss of B, NK, MLP, and GMP progenitors at

midpoint when no cytopenia was evident. CMP, common myeloid progenitor; MEP, megakaryocyte-erythroid progenitor; MPP, multi-potent progenitor. (F) Pattern of X

inactivation in females with GATA2 mutation at different stages of clinical evolution. Dominance of .75% is considered evidence of clonal hematopoiesis.
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Figure 4. Flt3L is a specific marker of GATA2 mutation. (A) Flt3L was measured by ELISA in the serum of unaffected relatives with WT GATA2 (n 5 13), individuals with

GATA2 mutation (n 5 24), patients with other PID (n 5 11), and MDS patients (n 5 11). For patients with GATA2 mutation, the clinical score (0 or 1 to 4) is indicated. (B) The

relationship between Flt3L and the development of MDS (n5 24). (C) Relationship between Flt3L and clinical score, excluding patients with MDS (n5 18). (D) Decline in DCs/

monocytes, B cells, and NK cells with increasing clinical score (n5 24). (E) Relationship between cell counts, Flt3L, and clinical stage (n5 24; shaded regions indicate normal

ranges and asterisks indicate P values for Spearman correlation coefficients). (F) Elevation of Flt3L mRNA detected by Q-PCR in GATA2 patients compared with controls,

and relationship between serum Flt-3L and percentage of CD3 (ie, T cells in PBMCs). *P , .05; **P , .01; ***P , .001. Q-PCR, quantitative polymerase chain reaction.
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(Figure 4F). From these data, we conclude that serial measurements
of Flt3L may be useful in identifying and assessing the prognosis of
patients with GATA2 mutation.

A proteomic screen of 117 cytokines, chemokines, growth factors,
and other immune mediators was initiated to seek other correlative
biomarkers. Confirmatory testing of a second larger cohort by ELISA
revealed trends for increased FGF-2, EGF, GM-CSF, and CD40L in
patients compared with healthy controls (supplemental Figure 3).

Peripheral lymphoid homeostasis in GATA2 mutation

GATA2 mutation is associated with a complete loss of B- and NK-
progenitors within the CD341 compartment of the BM.1 This implies
that these compartments become depleted by a shortage of immature
or naı̈ve cells, although it is also possible that GATA2 mutation
compromises the differentiation or survival of mature cells. For
more precise definition, we examined the B and NK compartments in
intermediate stages of evolution of DCML deficiency. Transitional
B cells were absent andmemoryB cells were skewed toward amature
phenotype (Figure 5A-B).27 In keeping with normal immunoglobulin
levels, IgD and IgM class-switched–B cells were detectable. In
addition, there was expansion of a small subset of CD382CD212

B cells associated with autoimmunity.28 As previously reported, the
most juvenile population of CD56bright NK cells was absent in patients
with GATA2 mutation,21 supporting the model of NK differentiation
from CD56bright to CD56dim populations (Figure 5C-D).29 Within the
CD56dim compartment, there was further evidence of skewing toward
a more highly differentiated phenotype characterized by the loss of
NKG2AandCD62L, and expression of killer-cell immunoglobulin-like
receptors (KIR).30

More detailed phenotyping of the CD81 T-cell compart-
ment disclosed a reduction of naı̈ve and central memory cells but
an accumulation of CCR72 CD45RA1 effector memory and
CCR72 CD45RA1 terminal effector populations (Figure 5E).31,32

In keeping with this, CD81 T cells of patients expressed lower
CD27, CD62L, CD38, and HLA-DR than controls (Figure 5F).
The expansion of CD561CD31 T cells observed in many patients
was consistentwith the accumulation of terminal effector CD81T cells
which was also found to express higher levels of KIR. There was
no expansion of gd T cells, invariant NK T cells, or CD1611

mucosal-associated invariant T cells (MAIT cells) within the
CD561 population. Unexpectedly, therewas a significant depletion of
MAIT cells in GATA2 patients (Figure 5G).

Discussion

This study describes a cross-sectional analysis of 30 patients that
reveals new information about the evolution of mononuclear cyto-
penia or DCML deficiency in GATA2 mutation (Figure 6). We
demonstrated DCML deficiency in 20 symptomatic members of the
cohort, and variable cytopenias in 2 of 6 of the asymptomatic
individuals who were phenotyped. Our findings concur with the
descriptions of cellular deficiency in Emberger syndrome7 and other
cases of lymphedema.9 Mononuclear cytopenia is also a key feature
of monoMAC3 and has been reported in patients with MDS and
GATA2 mutation.4,9-12,20

Patients were recruited from diverse clinical backgrounds, but
cytopenia often triggered referral, therefore the frequent observation
of DCML deficiency is perhaps not surprising. Notably, the pattern
of DCML deficiency was reproducible across variable clinical

phenotypes and the degree of cytopenia correlated with the elevation
of Flt3L and clinical severity.

Six symptomatic relatives were recruited from 3 different pedi-
grees with substitutions of the second zinc finger (R398W, R398Q,
and T354M) and a history of MDS or AML. Cytopenia and elevated
Flt3Lwas seen in 2 cases but 4 were phenotypically normal, including
a relative aged 62 years, suggesting that partial penetrance may occur.
Case #5 clearly developed a subclinical cellular phenotype with loss
of BM progenitors, progressive elevation of Flt3L, and evolution
cytopenia over a 3-year period of observation. Together with other
cases already described,9 this is consistent with the notion that DCML
deficiency may evolve over several decades but remain undetected.
Whether cytopenias and elevated Flt3L always precedeMDSorAML
remains unclear. Firstly, we have not yet prospectively documented
a case of DCML deficiency evolving into MDS or AML; and secon-
dly, it is entirely possible that unaffected carriers may undergo
spontaneous transformation without any sign of DCML deficiency.
Further prospective studies will be required to ascertain whether
DCML deficiency can be considered a true “accessory” hematologic
phenotype to GATA2-related MDS/AML, in the manner of throm-
bocytopenia in RUNX1 and eosinophilia in CEBPA mutations.33,34

In particular, we note that cytopenia was not reported in association
with the T354M and T355del mutations of GATA2, originally
described in familialMDS/AML.8 From a pragmatic stance, however,
our data suggests that it may be informative to monitor the devel-
opment of cytopenia and elevation of Flt3L in asymptomatic family
members at risk for MDS/AML.

Although GATA2 mutation is a constitutive genetic risk for
developing MDS,4,8-10,20 patients with GATA2 mutation may be
distinguished from those with acquired MDS and WT GATA2 on
several grounds.GATA2mutation is associated with amuch younger
age of presentation, better preserved Hb, neutrophils, and platelets,
and much more severe defects of DCs, monocytes, and lymphoid
cells than patients with MDS. Flt3L may be useful as a diagnostic
test in this setting; a level in excess of 1000 pg would identify
GATA2 mutation with 89% sensitivity and 100% specificity
compared with MDS patients. The observation that control MDS
patients did not haveGATA2mutations is consistent with a recent
large cohort study showing an incidence of mutation in only 4 of
603 MDS patients.35

We did not encounter large deletions or regulatory mutations of
GATA2 in this cohort despite sequencing the promoters, intron 5
enhancer, and untranslated regions of the gene. As in other studies,
frameshifts 59 to the second zinc finger and substitution mutations in
the second zinc finger predominate here.4,9,20We found a younger age
of presentation and higher clinical score in the frameshift group. An
association between lymphedema and frameshift mutation is sug-
gested by a survey of published cases.7,9,12 Although our data did not
reach significance, 3 of 4 patients with lymphedema had frameshift
mutations. This is a similar proportion to a previously reported study
(6 of 8 pedigrees).7 Significance was not reached because of cohort
size, as well as the low penetrance of this trait (8 of 11 symptomatic
frameshift patients did not develop lymphedema). In a similar fashion,
MDS was more often associated with substitution mutations, but not
all patients with substitution (including 4 of 6 with T354M), devel-
oped MDS. Preterm labor has been recognized in women carrying
GATA2 mutations.3 In this cohort, there was 1 case in each genotype
group with an overall incidence of 14% of live births in the cohort.
This compares with the European average of 7%.36

A simple clinical score aimed at the early complications suggested
that clinical progression was associated with evolving mononuclear
cytopenia and progressively elevated FLt3L. Flt3L is a trophic factor
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Figure 5. Highly differentiated phenotype of the peripheral lymphoid compartment of patients with GATA2 mutation. (A) Example of B-cell profile of patient with

GATA2 mutation compared with control according to published descriptions.23,27 Populations: (1) transitional; (2) naı̈ve mature; (3) mature activated; (4) resting memory;

(5) plasmablast; and (6) CD382CD212 (autoimmune-associated). (B) Quantification of GATA2-mutated patients vs controls showing depletion of transitional B cells and naı̈ve

memory B cells, and accumulation of memory B cells and CD382CD212 B cells. (C) Example of NK-cell profile of patient withGATA2mutation compared with control showing

the distribution of CD56bright NK cells, and NKG2A1 and KIR1 cells within the CD56dim population. (D) Quantification of GATA2-mutated patients vs controls showing

CD56bright NK cells and the expression of differentiation-associated antigens within the CD56dim population. Cytomegalovirus seropositivity is indicated by open symbols. (E)

Example of CD31 T-cell profile of a patient with GATA2 mutation compared with control showing CD4:CD8 profile and differentiation according to expression of CCR7 and

CD45RA. (F) Quantification of antigen expression by CD81 T cells of GATA2-mutated patients vs controls showing the acquisition of a terminally differentiated phenotype and

increased expression of KIR on the CD561 subset. (G) CD81 CD1611 Va7.21 MAIT cells are decreased in patients relative to controls. *P , .05; **P , .01; ***P , .001.
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for human progenitors and DCs.37-39 GATA2 mutation presumably
elicits a combined response to stem-cell attrition, DC deficiency, and
systemic infection.40,41 Flt3L is produced by activated T cells and
stromal cells,41-43 and serum Flt3L and Flt3L mRNA in PBMCs
increased in parallel with peripheral T-cell enrichment. A longitudinal
study of patient #5 indicated that the loss of progenitors and the
elevation of Flt3L preceded the development of cellular deficiency,
suggesting that themajor driver relates to the attrition of hematopoietic
progenitors rather than peripheral DC homeostasis. In more advanced
disease, it appeared that the development of MDS inGATA2-mutated
individuals was associatedwith a secondary decline in Flt3L, possibly
due to an expansion of marrow cellularity and consumption of Flt3L.
Further longitudinal study is required, but this may be a useful in-
dicator of hematologic progression.

The factors that promote the evolution of cytopenias remain
uncertain. Extrinsic infection has beenmooted andmay be consistent
with the high numbers of terminally differentiated peripheral T cells
seen in many patients. Alternatively, progressive cytopenia and
clonal hematopoiesis occurring in asymptomatic individuals, favors
cell intrinsic mechanisms. GATA2mutation is known to compromise
stem-cell longevity in animalmodels,44-46 but themechanism ispoorly
understood.

Flt3L was the only serum marker of 118 markers screened, to be
markedly elevated inGATA2mutation.Mild increases of FGF, EGF,
and M-CSF were seen, together with CD40L and GM-CSF. Stromal
growth factors (FGF and EGF), exerted a similar effect to Flt3L in
protecting animalmodels against hematopoietic stress.47 CD40L and
GM-CSF indicated immune activation. Of note, EGF and CD40L
were also elevated inmycobacterial infection andHIV infection.48,49

Themodest induction of thesemediators is of interest, but unlikely to
be useful in clinical monitoring.

GATA2mutation and DCML deficiency provide new insights into
the maintenance of long-term immunocompetence in adult humans. It
is surprising that an almost complete absence of DCs, monocytes, NK
cells, and B cells is compatible with long-term survival. Normal IgG
and memory T-cell development appears to sustain host resistance
to many pathogens and is probably established before cytopenias
develop. Patients with evolving DCML deficiency lose transitional

B cells, CD56bright NK cells, and naı̈ve T lymphocytes. The immu-
nophenotype that emerges is strongly reminiscent of the pattern of
terminal differentiation seen in aged individuals and chronic viral
infections such as cytomegalovirus, hepatitis C, and HIV.50 NK cells
of GATA2-deficient patients lose CD16, NKG2A, and acquire KIR
expression. Concomitantly, CD8 T cells express CD45RA (TEMRA
phenotype), lose CD27, CD62L, and activation markers HLA-DR
and CD38, but acquire CD56 and KIR.51 The function of terminally
differentiated cells has been described as defective in many studies,
but more recent data indicate that viral infections leave specific
adaptive signatures on NK- and T-cell phenotype.52,53 The absence of
professional antigen-presenting cells led us to speculate that invariant
T cells including invariantNKT cells, gdT cells, orMAIT cellsmight
be relatively expanded. The converse was observed, particularly
a reduction in MAIT cells, which is another finding consistent with
persistent infection and susceptibility to mycobacteria.54

In summary, DCMLdeficiency ormononuclear cytopenia evolves
in diverse clinical groups of GATA2 mutation including Emberger
syndrome, monoMAC, and hereditary MDS, but may not be com-
pletely penetrant or is an invariant precursor of malignant trans-
formation. GATA2 mutation appears to cause a complex process of
progenitor cell loss, associated with clonal myelopoiesis and elevated
Flt3L. Preservation of hematopoiesis in early life allows most
individuals to establish a degree of protective immunity. The results
presented in this study define the pathogenesis of GATA2 disease in
more detail and will assist in the development of individualized care
for patients. However, significant questions remain concerning the
molecular mechanisms of hematopoietic failure and malignant trans-
formation, caused by heterozygous GATA2 mutation in humans.
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40. Darrasse-Jèze G, Deroubaix S, Mouquet H, et al.
Feedback control of regulatory T cell homeostasis
by dendritic cells in vivo. J Exp Med. 2009;206(9):
1853-1862.

41. Saito Y, Boddupalli CS, Borsotti C, Manz MG.
Dendritic cell homeostasis is maintained by
nonhematopoietic and T-cell-produced Flt3-ligand
in steady state and during immune responses.
Eur J Immunol. 2013;43(6):1651-1658.

42. McClanahan T, Culpepper J, Campbell D, et al.
Biochemical and genetic characterization of
multiple splice variants of the Flt3 ligand. Blood.
1996;88(9):3371-3382.

43. Hannum C, Culpepper J, Campbell D, et al.
Ligand for FLT3/FLK2 receptor tyrosine kinase

regulates growth of haematopoietic stem cells and
is encoded by variant RNAs. Nature. 1994;
368(6472):643-648.

44. Tsai FY, Orkin SH. Transcription factor GATA-2
is required for proliferation/survival of early
hematopoietic cells and mast cell formation,
but not for erythroid and myeloid terminal
differentiation. Blood. 1997;89(10):3636-3643.

45. Ling KW, Ottersbach K, van Hamburg JP, et al.
GATA-2 plays two functionally distinct roles during
the ontogeny of hematopoietic stem cells. J Exp
Med. 2004;200(7):871-882.

46. Rodrigues NP, Janzen V, Forkert R, et al.
Haploinsufficiency of GATA-2 perturbs adult
hematopoietic stem-cell homeostasis. Blood.
2005;106(2):477-484.

47. Gratwohl A, John L, Baldomero H, et al. FLT-3
ligand provides hematopoietic protection from
total body irradiation in rabbits. Blood. 1998;92(3):
765-769.

48. Djoba Siawaya JF, Chegou NN, van den Heuvel
MM, et al. Differential cytokine/chemokines and
KL-6 profiles in patients with different forms of
tuberculosis. Cytokine. 2009;47(2):132-136.

49. Sipsas NV, Sfikakis PP, Kontos A, Kordossis T.
Levels of soluble CD40 ligand (CD154) in serum
are increased in human immunodeficiency virus

type 1-infected patients and correlate with CD4(1)
T-cell counts. Clin Diagn Lab Immunol. 2002;9(3):
558-561.

50. Strindhall J, Skog M, Ernerudh J, et al. The
inverted CD4/CD8 ratio and associated
parameters in 66-year-old individuals: the
Swedish HEXA immune study. Age (Dordr). 2013;
35(3):985-991.
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