619 research outputs found

    Multicharged Dyonic Integrable Models

    Get PDF
    We introduce and study new integrable models of A_n^{(1)}-Non-Abelian Toda type which admit U(1)\otimes U(1) charged topological solitons. They correspond to the symmetry breaking SU(n+1) \to SU(2)\otimes SU(2)\otimes U(1)^{n-2} and are conjectured to describe charged dyonic domain walls of N=1 SU(n+1) SUSY gauge theory in large n limit. It is shown that this family of relativistic IMs corresponds to the first negative grade q={-1} member of a dyonic hierarchy of generalized cKP type. The explicit relation between the 1-soliton solutions (and the conserved charges as well) of the IMs of grades q=-1 and q=2 is found. The properties of the IMs corresponding to more general symmetry breaking SU(n+1) \to SU(2)^{\otimes p}\otimes U(1)^{n-p} as well as IM with global SU(2) symmetries are discussed.Comment: 48pages, latex, v2. typos in eqns. (1.7) and (3.20) corrected, small improvements in subsection 2.2, new reference added;v3. improvements in text of Sect. 1,2 and 6; new Sect 7 and new refs. added; version to appear in Nucl. Phys.

    An anti-large T-antigen strategy to develop anti-JCV drugs

    Get PDF
    There are currently no JCV-specific therapies available for clinical use. This study evaluates viral large T antigen (LTA) as a potential target for drug development. LTA is a hexameric protein with a helicase activity that is powered by ATP binding and hydrolysis. The helicase and ATPase function is critical for viral replication and inhibition by small molecules would disrupt the viral life cycle. LTA is a valid target for discovery of anti-JCV drugs. The hits identified are reasonable starting points for medicinal chemistry to improve potency and selectivity. Screening of additional chemical libraries could also be considered to identify chemical structures that may be more potent with acceptable cytotoxicity

    Recommendations for the Treatment of Anti-Melanoma Differentiation-Associated Gene 5-positive Dermatomyositis-Associated Rapidly Progressive Interstitial Lung Disease

    Get PDF
    Objectives: The study aimed to develop evidence-based recommendations for the treatment of rapidly progressive interstitial lung disease (RPILD) associated with the anti-Melanoma Differentiation-Associated Gene 5-positive dermatomyositis (DM) syndrome. Methods: The task force comprised an expert panel of specialists in rheumatology, intensive care medicine, pulmonology, immunology, and internal medicine. The study was carried out in two phases: identifying key areas in the management of DM-RPILD syndrome and developing a set of recommendations based on a review of the available scientific evidence. Four specific questions focused on different treatment options were identified. Relevant publications in English, Spanish or French up to April 2018 were searched systematically for each topic using PubMed (MEDLINE), EMBASE, and Cochrane Library (Wiley Online). The experts used evidence obtained from these studies to develop recommendations. Results: A total of 134 studies met eligibility criteria and formed the evidentiary basis for the recommendations regarding immunosuppressive therapy and complementary treatments. Overall, there was general agreement on the initial use of combined immunosuppressive therapy. Combination of high-dose glucocorticoids and calcineurin antagonists with or without cyclophosphamide is the first choice. In the case of calcineurin antagonist contraindication or treatment failure, switching or adding other immunosuppressants may be individualized. Plasmapheresis, polymyxin B hemoperfusion and/or intravenous immunoglobulins may be used as rescue options. ECMO should be considered in life-threatening situations while waiting for a clinical response or as a bridge to lung transplant. Conclusions: Thirteen recommendations regarding the treatment of the anti-MDA5 positive DM-RPILD were developed using research-based evidence and expert opinion.This project was supported by Spanish Rheumatology Society and Spanish Society of Internal Medicine (GEAS, Study Group on Autoimmune Diseases)

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 8080^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×1051.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×1032.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination

    Get PDF
    The presence of hypoxic regions in solid tumors is an adverse prognostic factor for patient outcome. Here, we show that hypoxia induces the expression of Ephrin-A3 through a novel hypoxia-inducible factor (HIF)-mediated mechanism. In response to hypoxia, the coding EFNA3 mRNA levels remained relatively stable, but HIFs drove the expression of previously unknown long noncoding (lnc) RNAs from EFNA3 locus and these lncRNA caused Ephrin-A3 protein accumulation. Ephrins are cell surface proteins that regulate diverse biological processes by modulating cellular adhesion and repulsion. Mounting evidence implicates deregulated ephrin function in multiple aspects of tumor biology. We demonstrate that sustained expression of both Ephrin-A3 and novel EFNA3 lncRNAs increased the metastatic potential of human breast cancer cells, possibly by increasing the ability of tumor cells to extravasate from the blood vessels into surrounding tissue. In agreement, we found a strong correlation between high EFNA3 expression and shorter metastasis-free survival in breast cancer patients. Taken together, our results suggest that hypoxia could contribute to metastatic spread of breast cancer via HIF-mediated induction of EFNA3 lncRNAs and subsequent Ephrin-A3 protein accumulation
    corecore