130 research outputs found

    Functional characteristics of lymphocytes propagated from a human multivisceral allograft.

    Get PDF
    We investigated the characteristics of lymphocytes propagated from biopsies of the mesenteric lymph nodes, liver, and ileum of a human multivisceral allograft in order to provide functional evidence for the presence or absence of rejection and graft-versus-host disease (GVHD). The recipient was a 39-month-old girl with secretory diarrhea due to microvillus inclusion disease and end-stage liver disease secondary to prolonged parenteral nutrition. She developed a multifocal posttransplant lymphoproliferative disorder (PTLD) and died 37 days after transplantation. Four pairs of sequential mesenteric lymph node and liver biopsies (13, 17, 24, and 33 d posttransplant) and a single ileal biopsy (31 d posttransplant) were placed in culture with recombinant interleukin-2 (rIL-2) and phytohemagglutinin (PHA). T-cell phenotyping of cultured cells showed that CD8+ cells became dominant in all three tissues. The alloreactivity of biopsy-grown cells was determined using the primed lymphocyte test (PLT) and cell-mediated lympholysis test (CML). The proliferative and/or cytolytic responses of biopsy-grown cells to donor but not recipient or third party cells provided evidence for rejection and absence of GVHD. This donor-specific alloreactivity was detected before there was histologic evidence of rejection and during the period of active lymphoproliferation. This study suggests that the functional characterization of graft-infiltrating lymphocytes is useful in defining the immunologic events following multivisceral transplantation

    HLA and cross-reactive antigen group matching for cadaver kidney allocation

    Get PDF
    Background. Allocation of cadaver kidneys by graded human leukocyte antigen (HLA) compatibility scoring arguably has had little effect on overall survival while prejudicing the transplant candidacy of African-American and other hard to match populations. Consequently, matching has been proposed of deduced amino acid residues of the individual HLA molecules shared by cross- reactive antigen groups (CREGs). We have examined the circumstances under which compatibility with either method impacted graft survival. Methods. Using Cox proportional hazards regression modeling, we studied the relationship between levels of conventional HLA mismatch and other donor and recipient factors on primary cadaver kidney survival between 1981 and 1995 at the University of Pittsburgh (n=1,780) and in the United Network for Organ Sharing (UNOS) Scientific Registry during 1991-1995 (n=31,291). The results were compared with those obtained by the matching of amino acid residues that identified CREG-compatible cases with as many as four (but not five and six) HLA mismatches. Results. With more than one HLA mismatch (>85% of patients in both series), most of the survival advantage of a zero mismatch was lost. None of the HLA loci were 'weak.' In the UNOS (but not Pittsburgh) category of one-HLA mismatch (n=1334), a subgroup of CREG-matched recipients (35.3%) had better graft survival than the remaining 64.7%, who were CREG-mismatched. There was no advantage of a CREG match in the two- to four-HLA incompatibility tiers. Better graft survival with tacrolimus was observed in both the Pittsburgh and UNOS series. Conclusions. Obligatory national sharing of cadaver kidneys is justifiable only for zero-HLA-mismatched kidneys. The potential value of CREG matching observed in the one-HLA-mismatched recipients of the UNOS (but not the Pittsburgh) experience deserves further study

    Divergent Pathways in COS-7 Cells Mediate Defective Internalization and Intracellular Routing of Truncated G-CSFR Forms in SCN/AML

    Get PDF
    Expression of truncated G-CSFR forms in patients with SCN/AML induces hyperproliferation and prolonged cell survival. Previously, we showed that ligand internalization is delayed and degradation of truncated G-CSFR forms is defective in patients with SCN/AML.In this study, we investigated the potential roles of dileucine and tyrosine-based motifs within the cytoplasmic domain of the G-CSFR in modulating ligand/receptor internalization. Using standard binding assays with radiolabeled ligand and COS-7 cells, substitutions in the dileucine motif or deletion of tyrosine residues in the G-CSFR did not alter internalization. Attachment of the transferrin receptor YTRF internalization motif to a truncated G-CSFR form from a patient with SCN/AML corrected defective internalization, but not receptor degradation suggesting that receptor internalization and degradation occur independently via distinct domains and/or processes.Our data suggest that distinct domains within the G-CSFR mediate separate processes for receptor internalization and degradation. Our findings using standard binding assays differ from recently published data utilizing flow cytometry

    Comparative genomics reveals functional transcriptional control sequences in the Prop1 gene

    Get PDF
    Mutations in PROP1 are a common genetic cause of multiple pituitary hormone deficiency (MPHD). We used a comparative genomics approach to predict the transcriptional regulatory domains of Prop1 and tested them in cell culture and mice. A BAC transgene containing Prop1 completely rescues the Prop1 mutant phenotype, demonstrating that the regulatory elements necessary for proper PROP1 transcription are contained within the BAC. We generated DNA sequences from the PROP1 genes in lemur, pig, and five different primate species. Comparison of these with available human and mouse PROP1 sequences identified three putative regulatory sequences that are highly conserved. These are located in the PROP1 promoter proximal region, within the first intron of PROP1, and downstream of PROP1. Each of the conserved elements elicited orientation-specific enhancer activity in the context of the Drosophila alcohol dehydrogenase minimal promoter in both heterologous and pituitary-derived cells lines. The intronic element is sufficient to confer dorsal expansion of the pituitary expression domain of a transgene, suggesting that this element is important for the normal spatial expression of endogenous Prop1 during pituitary development. This study illustrates the usefulness of a comparative genomics approach in the identification of regulatory elements that may be the site of mutations responsible for some cases of MPHD

    Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T>G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T>G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects
    corecore