83 research outputs found

    Renormalization group scale-setting from the action - a road to modified gravity theories

    Get PDF
    The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the renormalization group is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG corrected gravitational theories yields the effective f(R)f(R) modified gravity theories with negative powers of the Ricci scalar RR. The scale-setting at the level of the action at the non-gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in Ricci tensor.Comment: v1: 15 pages; v2: shortened to 10 pages, main results unchanged, published in Class. Quant. Gra

    Cosmological constant in scale-invariant theories

    Full text link
    The incorporation of a small cosmological constant within radiatively-broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable `false' vacuum which, fortunately, is not expected to decay on cosmological time scales.Comment: 10 pages; v2: clarifying remarks added, to appear in Physical Review

    ProteinHistorian: Tools for the Comparative Analysis of Eukaryote Protein Origin

    Get PDF
    The evolutionary history of a protein reflects the functional history of its ancestors. Recent phylogenetic studies identified distinct evolutionary signatures that characterize proteins involved in cancer, Mendelian disease, and different ontogenic stages. Despite the potential to yield insight into the cellular functions and interactions of proteins, such comparative phylogenetic analyses are rarely performed, because they require custom algorithms. We developed ProteinHistorian to make tools for performing analyses of protein origins widely available. Given a list of proteins of interest, ProteinHistorian estimates the phylogenetic age of each protein, quantifies enrichment for proteins of specific ages, and compares variation in protein age with other protein attributes. ProteinHistorian allows flexibility in the definition of protein age by including several algorithms for estimating ages from different databases of evolutionary relationships. We illustrate the use of ProteinHistorian with three example analyses. First, we demonstrate that proteins with high expression in human, compared to chimpanzee and rhesus macaque, are significantly younger than those with human-specific low expression. Next, we show that human proteins with annotated regulatory functions are significantly younger than proteins with catalytic functions. Finally, we compare protein length and age in many eukaryotic species and, as expected from previous studies, find a positive, though often weak, correlation between protein age and length. ProteinHistorian is available through a web server with an intuitive interface and as a set of command line tools; this allows biologists and bioinformaticians alike to integrate these approaches into their analysis pipelines. ProteinHistorian's modular, extensible design facilitates the integration of new datasets and algorithms. The ProteinHistorian web server, source code, and pre-computed ages for 32 eukaryotic genomes are freely available under the GNU public license at http://lighthouse.ucsf.edu/ProteinHistorian/

    Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution

    Full text link
    A new class of FLRW cosmological models with time-evolving fundamental parameters should emerge naturally from a description of the expansion of the universe based on the first principles of quantum field theory and string theory. Within this general paradigm, one expects that both the gravitational Newton's coupling, G, and the cosmological term, Lambda, should not be strictly constant but appear rather as smooth functions of the Hubble rate. This scenario ("running FLRW model") predicts, in a natural way, the existence of dynamical dark energy without invoking the participation of extraneous scalar fields. In this paper, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent SNIa data, the CMB shift parameter, and the BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the main cosmological parameters. Furthermore, we derive the theoretically predicted dark-matter halo mass function and the corresponding redshift distribution of cluster-size halos for the "running" models studied. Despite the fact that these models closely reproduce the standard LCDM Hubble expansion, their normalization of the perturbation's power-spectrum varies, imposing, in many cases, a significantly different cluster-size halo redshift distribution. This fact indicates that it should be relatively easy to distinguish between the "running" models and the LCDM cosmology using realistic future X-ray and Sunyaev-Zeldovich cluster surveys.Comment: Version published in JCAP 08 (2011) 007: 1+41 pages, 6 Figures, 1 Table. Typos corrected. Extended discussion on the computation of the linearly extrapolated density threshold above which structures collapse in time-varying vacuum models. One appendix, a few references and one figure adde

    Ortho2ExpressMatrixβ€”a web server that interprets cross-species gene expression data by gene family information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of gene families is pivotal for the understanding of gene evolution across different organisms and such phylogenetic background is often used to infer biochemical functions of genes. Modern high-throughput experiments offer the possibility to analyze the entire transcriptome of an organism; however, it is often difficult to deduct functional information from that data.</p> <p>Results</p> <p>To improve functional interpretation of gene expression we introduce Ortho2ExpressMatrix, a novel tool that integrates complex gene family information, computed from sequence similarity, with comparative gene expression profiles of two pre-selected biological objects: gene families are displayed with two-dimensional matrices. Parameters of the tool are object type (two organisms, two individuals, two tissues, etc.), type of computational gene family inference, experimental meta-data, microarray platform, gene annotation level and genome build. Family information in Ortho2ExpressMatrix bases on computationally different protein family approaches such as EnsemblCompara, InParanoid, SYSTERS and Ensembl Family. Currently, respective all-against-all associations are available for five species: human, mouse, worm, fruit fly and yeast. Additionally, microRNA expression can be examined with respect to miRBase or TargetScan families. The visualization, which is typical for Ortho2ExpressMatrix, is performed as matrix view that displays functional traits of genes (differential expression) as well as sequence similarity of protein family members (BLAST e-values) in colour codes. Such translations are intended to facilitate the user's perception of the research object.</p> <p>Conclusions</p> <p>Ortho2ExpressMatrix integrates gene family information with genome-wide expression data in order to enhance functional interpretation of high-throughput analyses on diseases, environmental factors, or genetic modification or compound treatment experiments. The tool explores differential gene expression in the light of orthology, paralogy and structure of gene families up to the point of ambiguity analyses. Results can be used for filtering and prioritization in functional genomic, biomedical and systems biology applications. The web server is freely accessible at <url>http://bioinf-data.charite.de/o2em/cgi-bin/o2em.pl</url>.</p

    Towards an Evolutionary Model of Transcription Networks

    Get PDF
    DNA evolution models made invaluable contributions to comparative genomics, although it seemed formidable to include non-genomic features into these models. In order to build an evolutionary model of transcription networks (TNs), we had to forfeit the substitution model used in DNA evolution and to start from modeling the evolution of the regulatory relationships. We present a quantitative evolutionary model of TNs, subjecting the phylogenetic distance and the evolutionary changes of cis-regulatory sequence, gene expression and network structure to one probabilistic framework. Using the genome sequences and gene expression data from multiple species, this model can predict regulatory relationships between a transcription factor (TF) and its target genes in all species, and thus identify TN re-wiring events. Applying this model to analyze the pre-implantation development of three mammalian species, we identified the conserved and re-wired components of the TNs downstream to a set of TFs including Oct4, Gata3/4/6, cMyc and nMyc. Evolutionary events on the DNA sequence that led to turnover of TF binding sites were identified, including a birth of an Oct4 binding site by a 2nt deletion. In contrast to recent reports of large interspecies differences of TF binding sites and gene expression patterns, the interspecies difference in TF-target relationship is much smaller. The data showed increasing conservation levels from genomic sequences to TF-DNA interaction, gene expression, TN, and finally to morphology, suggesting that evolutionary changes are larger at molecular levels and smaller at functional levels. The data also showed that evolutionarily older TFs are more likely to have conserved target genes, whereas younger TFs tend to have larger re-wiring rates

    The evolution of gene expression and the transcriptome–phenotype relationship

    Get PDF
    Changes in gene expression underlie the adaptive evolution in many complex phenotypes, and the recent increase in the availability of multi-species comparative transcriptome data has made it possible to scan whole transcriptomes for loci that have experienced adaptive changes in expression. However, despite the increase in data availability, current models of gene expression evolution often do not account for the complexities and inherent noise associated with transcriptome data. Additionally, in contrast to current models of gene sequence evolution, models of transcriptome evolution often lack the sophistication to effectively determine whether transcriptional differences between species or within a clade are the result of neutral or adaptive processes. In this review, we discuss the tools, methods and models that define our current understanding of the relationship between gene expression and complex phenotype evolution. Our goal is to summarize what we know about the evolution of global gene expression patterns underlying complex traits, as well to identify some of the questions that remain to be answered

    Multidimensional Scaling Reveals the Main Evolutionary Pathways of Class A G-Protein-Coupled Receptors

    Get PDF
    Class A G-protein-coupled receptors (GPCRs) constitute the largest family of transmembrane receptors in the human genome. Understanding the mechanisms which drove the evolution of such a large family would help understand the specificity of each GPCR sub-family with applications to drug design. To gain evolutionary information on class A GPCRs, we explored their sequence space by metric multidimensional scaling analysis (MDS). Three-dimensional mapping of human sequences shows a non-uniform distribution of GPCRs, organized in clusters that lay along four privileged directions. To interpret these directions, we projected supplementary sequences from different species onto the human space used as a reference. With this technique, we can easily monitor the evolutionary drift of several GPCR sub-families from cnidarians to humans. Results support a model of radiative evolution of class A GPCRs from a central node formed by peptide receptors. The privileged directions obtained from the MDS analysis are interpretable in terms of three main evolutionary pathways related to specific sequence determinants. The first pathway was initiated by a deletion in transmembrane helix 2 (TM2) and led to three sub-families by divergent evolution. The second pathway corresponds to the differentiation of the amine receptors. The third pathway corresponds to parallel evolution of several sub-families in relation with a covarion process involving proline residues in TM2 and TM5. As exemplified with GPCRs, the MDS projection technique is an important tool to compare orthologous sequence sets and to help decipher the mutational events that drove the evolution of protein families

    Cross-Sample Validation Provides Enhanced Proteome Coverage in Rat Vocal Fold Mucosa

    Get PDF
    The vocal fold mucosa is a biomechanically unique tissue comprised of a densely cellular epithelium, superficial to an extracellular matrix (ECM)-rich lamina propria. Such ECM-rich tissues are challenging to analyze using proteomic assays, primarily due to extensive crosslinking and glycosylation of the majority of high Mr ECM proteins. In this study, we implemented an LC-MS/MS-based strategy to characterize the rat vocal fold mucosa proteome. Our sample preparation protocol successfully solubilized both proteins and certain high Mr glycoconjugates and resulted in the identification of hundreds of mucosal proteins. A straightforward approach to the treatment of protein identifications attributed to single peptide hits allowed the retention of potentially important low abundance identifications (validated by a cross-sample match and de novo interpretation of relevant spectra) while still eliminating potentially spurious identifications (global single peptide hits with no cross-sample match). The resulting vocal fold mucosa proteome was characterized by a wide range of cellular and extracellular proteins spanning 12 functional categories

    Structure and Age Jointly Influence Rates of Protein Evolution

    Get PDF
    What factors determine a protein's rate of evolution are actively debated. Especially unclear is the relative role of intrinsic factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs between human and mouse proteins, with mapped PDB structures. We report that previously observed structural correlations also hold within each age group – including relationships between solvent accessibility, designabililty, and evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally, we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein evolution
    • …
    corecore