91 research outputs found

    Hadamard Renormalization of the Stress Energy Tensor in a Spherically Symmetric Black Hole Space-Time with an Application to Lukewarm Black Holes

    Get PDF
    We consider a quantum field which is in a Hartle-Hawking state propagating in a spherically symmetric black hole space-time. We calculate the components of the stress tensor, renormalized using the Hadamard form of the Green's function, in the exterior region of this space-time. We then specialize these results to the case of the `lukewarm' Riessner-Nordstrom-de Sitter black hole.Comment: 17 pages, 8 figures and 2 table

    Extruded Monofilament and Multifilament Thermoplastic Stitching Yarns

    Get PDF
    Carbon fibre reinforced polymer composites offer significant improvement in overall material strength to weight, when compared with metals traditionally used in engineering. As a result, they are replacing metals where overall weight is a significant consideration, such as in the aerospace and automotive industries. However, due to their laminate structure, delamination is a prime concern. Through-thickness stitching has been shown to be a relatively simple method of improving resistance to delamination. In this paper, monofilament and multifilament fibres of a similar overall diameter were characterised and their properties compared for their suitability as stitching yarns. Dissimilar to other published works which rely on commercially available materials, such as polyparaphenylene terephthalamide, criteria were produced on the required properties and two potentially promising polymers were selected for extrusion. It was found that although the multifilament fibres had a greater ultimate tensile strength, they began to yield at a lower force than their monofilament equivalent

    Methodological evaluation of architectural alternatives for an aeronautical delay tolerant network

    Get PDF
    In this paper, we use graph analysis to evaluate the network architecture of a large scale delay tolerant network (DTN) of transoceanic aircraft. At LCN (Local Computer Networks) 2014 we analyzed information propagation inside a pure opportunistic version of this network, a scenario constructed from more than 2,500 traces of transatlantic flights in which communications relied only on the sporadic contacts between airplanes. As only a small percentage of the nodes were capable of performing efficient air-to-ground communications we concluded the need to devise a more suitable network architecture by combining opportunistic and satellite communication systems. We propose a generic methodology based on graph analysis (both static and dynamic temporal) to evaluate the different ways to create this new architecture. We show the architectural combination that most improves the network delivery performance while minimizing its deployment costs

    Vacuum polarization on the brane

    Get PDF
    We compute the renormalized expectation value of the square of a massless, conformally coupled, quantum scalar field on the brane of a higher-dimensional black hole. Working in the AADD brane-world scenario, the extra dimensions are flat and we assume that the compactification radius is large compared with the size of the black hole. The four-dimensional on-brane metric corresponds to a slice through a higher-dimensional Schwarzschild-Tangherlini black hole geometry and depends on the number of bulk space-time dimensions. The quantum scalar field is in a thermal state at the Hawking temperature. An exact, closed-form expression is derived for the renormalized expectation value of the square of the quantum scalar field on the event horizon of the black hole. Outside the event horizon, this renormalized expectation value is computed numerically. The answer depends on the number of bulk space-time dimensions, with a magnitude which increases rapidly as the number of bulk space-time dimensions increases

    Transcutaneous electrical nerve stimulation using an LTP-like repetitive stimulation protocol for patients with upper limb complex regional pain syndrome: A feasibility study

    Get PDF
    Introduction This feasibility study aimed to (i) develop a clinical protocol using a long-term potentiation-like repetitive stimulation protocol for transcutaneous electrical nerve stimulation in patients with upper limb complex regional pain syndrome and (ii) develop a research protocol for a single-blind randomised controlled trial investigating the efficacy of transcutaneous electrical nerve stimulation for complex regional pain syndrome. Methods This small-scale single-blind feasibility randomised-controlled trial planned to randomise 30 patients with upper limb complex regional pain syndrome to either a variant of transcutaneous electrical nerve stimulation or placebo transcutaneous electrical nerve stimulation for three weeks. Stimulation comprised 20 pulses over 1 s with a non-stimulation interval of 5 s, a so-called repetitive electrical stimulation protocol following the timing of long-term potentiation. Pain, function and body image were measured at baseline, post-treatment and at three months follow-up. At three months, participants were invited to one-to-one interviews, which were analysed thematically. Results A transcutaneous electrical nerve stimulation protocol with electrodes applied proximal to the area of allodynia in the region of the upper arm was developed. Participant concordance with the protocol was high. Recruitment was below target (transcutaneous electrical nerve stimulation (n = 6), placebo (n = 2)). Mean (SD) pain intensity for the transcutaneous electrical nerve stimulation group on a 0 to 10 scale was 7.2 (2.4), 6.6 (2.8) and 7.8 (1.9), at baseline, post-treatment and at three-month follow-up, respectively. Qualitative data suggested that some patients found transcutaneous electrical nerve stimulation beneficial, easy to use and were still using it at three months. Conclusion Patients tolerated transcutaneous electrical nerve stimulation well, and important methodological information to facilitate the design of a large-scale trial was obtained (ISRCTN48768534). </jats:sec

    Hypoxia induces a glycolytic complex in intestinal epithelial cells independent of HIF-1-driven glycolytic gene expression

    Get PDF
    The metabolic adaptation of eukaryotic cells to hypoxia involves increasing dependence upon glycolytic adenosine triphosphate (ATP) production, an event with consequences for cellular bioenergetics and cell fate. This response is regulated at the transcriptional level by the hypoxia-inducible factor-1(HIF-1)-dependent transcriptional upregulation of glycolytic enzymes (GEs) and glucose transporters. However, this transcriptional upregulation alone is unlikely to account fully for the levels of glycolytic ATP produced during hypoxia. Here, we investigated additional mechanisms regulating glycolysis in hypoxia. We observed that intestinal epithelial cells treated with inhibitors of transcription or translation and human platelets (which lack nuclei and the capacity for canonical transcriptional activity) maintained the capacity for hypoxia-induced glycolysis, a finding which suggests the involvement of a nontranscriptional component to the hypoxia-induced metabolic switch to a highly glycolytic phenotype. In our investigations into potential nontranscriptional mechanisms for glycolytic induction, we identified a hypoxia-sensitive formation of complexes comprising GEs and glucose transporters in intestinal epithelial cells. Surprisingly, the formation of such glycolytic complexes occurs independent of HIF-1-driven transcription. Finally, we provide evidence for the presence of HIF-1α in cytosolic fractions of hypoxic cells which physically interacts with the glucose transporter GLUT1 and the GEs in a hypoxia-sensitive manner. In conclusion, we provide insights into the nontranscriptional regulation of hypoxia-induced glycolysis in intestinal epithelial cells.</p

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber

    Modeling population effects of the Deepwater Horizon oil spill on a long-lived species

    Get PDF
    This research was enabled partly by a grant from The Gulf of Mexico Research Initiative (GOMRI).The 2010 Deepwater Horizon (DWH) oil spill exposed common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana to heavy oiling that caused increased mortality and chronic disease and impaired reproduction in surviving dolphins. We conducted photographic surveys and veterinary assessments in the decade following the spill. We assigned a prognostic score (good, fair, guarded, poor, or grave) for each dolphin to provide a single integrated indicator of overall health, and we examined temporal trends in prognostic scores. We used expert elicitation to quantify the implications of trends for the proportion of the dolphins that would recover within their lifetime. We integrated expert elicitation, along with other new information, in a population dynamics model to predict the effects of observed health trends on demography. We compared the resulting population trajectory with that predicted under baseline (no spill) conditions. Disease conditions persisted and have recently worsened in dolphins that were presumably exposed to DWH oil: 78% of those assessed in 2018 had a guarded, poor, or grave prognosis. Dolphins born after the spill were in better health. We estimated that the population declined by 45% (95% CI 14–74) relative to baseline and will take 35 years (95% CI 18–67) to recover to 95% of baseline numbers. The sum of annual differences between baseline and injured population sizes (i.e., the lost cetacean years) was 30,993 (95% CI 6607–94,148). The population is currently at a minimum point in its recovery trajectory and is vulnerable to emerging threats, including planned ecosystem restoration efforts that are likely to be detrimental to the dolphins’ survival. Our modeling framework demonstrates an approach for integrating different sources and types of data, highlights the utility of expert elicitation for indeterminable input parameters, and emphasizes the importance of considering and monitoring long-term health of long-lived species subject to environmental disasters. Article impact statement: Oil spills can have long-term consequences for the health of long-lived species; thus, effective restoration and monitoring are needed.Publisher PDFPeer reviewe
    • …
    corecore