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Abstract

The 2010 Deepwater Horizon (DWH) oil spill exposed common bottlenose dolphins
(Tursiops truncatus) in Barataria Bay, Louisiana to heavy oiling that caused increased mortality
and chronic disease and impaired reproduction in surviving dolphins. We conducted pho-
tographic surveys and veterinary assessments in the decade following the spill. We assigned
a prognostic score (good, fair, guarded, poor, or grave) for each dolphin to provide a sin-
gle integrated indicator of overall health, and we examined temporal trends in prognostic
scores. We used expert elicitation to quantify the implications of trends for the proportion
of the dolphins that would recover within their lifetime. We integrated expert elicitation,
along with other new information, in a population dynamics model to predict the effects
of observed health trends on demography. We compared the resulting population trajec-
tory with that predicted under baseline (no spill) conditions. Disease conditions persisted
and have recently worsened in dolphins that were presumably exposed to DWH oil: 78%
of those assessed in 2018 had a guarded, poor, or grave prognosis. Dolphins born after
the spill were in better health. We estimated that the population declined by 45% (95%
CI 14–74) relative to baseline and will take 35 years (95% CI 18–67) to recover to 95%
of baseline numbers. The sum of annual differences between baseline and injured popula-
tion sizes (i.e., the lost cetacean years) was 30,993 (95% CI 6607–94,148). The population
is currently at a minimum point in its recovery trajectory and is vulnerable to emerging
threats, including planned ecosystem restoration efforts that are likely to be detrimental to
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the dolphins’ survival. Our modeling framework demonstrates an approach for integrating
different sources and types of data, highlights the utility of expert elicitation for indeter-
minable input parameters, and emphasizes the importance of considering and monitoring
long-term health of long-lived species subject to environmental disasters.
Article impact statement: Oil spills can have long-term consequences for the health of long-
lived species; thus, effective restoration and monitoring are needed.
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Resumen

El derrame de petróleo Deepwater Horizon (DWH) en 2010 expuso gravemente a este hidro-
carburo a los delfines (Tursiops truncatus) de la Bahía Barataria, Luisiana, causando un incre-
mento en la mortalidad y en las enfermedades crónicas, y deteriorando la reproducción
de los delfines sobrevivientes. Realizamos censos fotográficos y evaluaciones veterinarias
durante la década posterior al derrame. Asignamos un puntaje pronóstico (bueno, favor-
able, moderado, malo, o grave) a cada delfín para proporcionar un indicador integrado
único de la salud en general. También examinamos las tendencias temporales de estos pun-
tajes. Usamos información de expertos para cuantificar las implicaciones de las tendencias
para la proporción de delfines que se recuperaría dentro de su periodo de vida. Integramos
esta información, junto con información nueva, a un modelo de dinámica poblacional para
predecir los efectos sobre la demografía de las tendencias observadas en la salud. Com-
paramos la trayectoria poblacional resultante con aquella pronosticada bajo condiciones de
línea base (sin derrame). Las condiciones de enfermedad persistieron y recientemente han
empeorado en los delfines que supuestamente estuvieron expuestos al petróleo de DWH:
78% de aquellos evaluados en 2018 tuvieron un pronóstico moderado, malo o grave. Los
delfines que nacieron después del derrame contaron con mejor salud. Estimamos que la
población declinó en un 45% (95% CI 14–74) relativo a la línea base y tardará 35 años
(95% CI 18–67) en recuperar el 95% de los números de línea base. La suma de las difer-
encias anuales entre el tamaño poblacional de línea base y el dañado (es decir, los años
cetáceos perdidos) fue de 30,993 (95% CI 6,607-94,148). La población actualmente está en
un punto mínimo de su trayectoria de recuperación y es vulnerable a las amenazas emer-
gentes, incluyendo los esfuerzos de restauración ambiental planeada que probablemente
sean nocivos para la supervivencia de los delfines. Nuestro marco de modelado demuestra
una estrategia para la integración de diferentes fuentes y tipos de datos, resalta la utilidad
de la información de expertos para los parámetros de aportación indeterminable, y enfatiza
la importancia de la consideración y el monitoreo de la salud a largo plazo de las especies
longevas sujetas a los desastres ambientales.
Modelado de los Efectos Poblacionales del Derrame de Petróleo Deepwater Horizon sobre
Especies Longevas

PALABRAS CLAVE

análisis de salud, delfín, derrame de petróleo, especie longeva, información de expertos, mamífero marino, mod-
elo poblacional

INTRODUCTION

In 2010, an explosion on the Deepwater Horizon (DWH) oil plat-
form killed 11 people and led to the largest marine oil spill in
U.S. history. Approximately 130 million gallons of oil flowed
into the Gulf of Mexico, spreading to over 2000 km of coastline
(Westerholm & Rauch, 2016). Some impacts on wildlife were
immediately obvious; thousands of turtles and marine birds
were found floating in oil slicks or washed ashore mired in oil.

Other, less direct but more enduring, impacts emerged later.
Strandings of dead dolphins with pathological findings consis-
tent with oil-related injury increased (Venn-Watson et al., 2015)
and remained elevated for at least 3 years, contributing to the
largest cetacean unusual mortality event ever recorded for the
Gulf of Mexico (Litz et al., 2014).

In the years immediately following the spill (2010–2015),
a natural resource damage assessment (NRDA) was con-
ducted, which included studies to assess injuries to cetacean
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populations and identify actions to restore injured resources
(Westerholm & Rauch, 2016). The cetacean NRDA field stud-
ies focused on common bottlenose dolphins (Tursiops truncatus)
(hereafter dolphins) because of their accessibility in nearshore
waters. Health assessment studies on dolphins in Barataria Bay
(BB), Louisiana, where heavy oiling occurred, documented sub-
lethal health effects, including reproductive failure, lung disease,
and impaired stress response (Kellar et al., 2017; Schwacke et al.,
2014).

As part of the NRDA, a population model was developed
to evaluate the time it would take for the BB dolphin popu-
lation to recover (Schwacke et al., 2017). The model integrated
estimates of immediate postspill mortality and reproductive fail-
ure derived from photographic identification (photo-ID) stud-
ies conducted over 4 years following the spill (Kellar et al., 2017;
McDonald et al., 2017) with veterinarians’ predictions of how
long reproductive impairment and compromised health, which
decreased survival, would likely persist. The model was based on
the assumption that fecundity rates are density dependent (DD),
increasing as a function of reduced population size, and that dol-
phins born after the spill do not exhibit oil-related health effects.
These assumptions were important because recovery of the
population is highly dependent on emergence of a new, healthy
cohort. Yet, potential for multigenerational health effects was
unknown, and the largest sources for uncertainty in population
projections were associated with the DD function and estimates
of how long it would take for exposed dolphins to return to
baseline health status.

Additional years (2016–2019) of photo-ID and health assess-
ment studies now provide a decade of data to assess tempo-
ral trends in health and to evaluate population model assump-
tions regarding multigenerational effects and individual health
recovery. We used these additional data and results from for-
mal expert elicitation (EE) to refine population model param-
eters for recovery to baseline health status and DD fecundity.
Using the refined model, we conduct analyses to reexamine the
predicted population trajectory, with an aim to provide a better
informed assessment for recovery of the BB population. This
is timely because ecosystem restoration projects funded by the
DWH NRDA settlement are being initiated, which may benefit
some natural resources but could have further negative effects
on dolphins. Our approach, integrating EE for indeterminable
inputs, is uniquely suited for future efforts to assess damage
and long-term consequences for long-lived species following
oil spills or other environmental disasters, particularly in cases
where deaths and births are difficult to observe and for which
detection of population trends is difficult.

METHODS

Study areas and data

We used data from studies conducted in BB, including dolphin
sighting histories from photo-ID surveys and health diagnos-
tics from capture-release studies. We previously reported results
from BB health assessments conducted in 2011, 2013, and 2014

(Schwacke et al., 2014; Smith et al., 2017). Here, we integrated
those data with new health assessment data obtained in 2016–
2018. Health data were also obtained from capture-release stud-
ies at an unoiled comparison site, Sarasota Bay (SB), Florida, in
2011 and 2013–2018. The health data from SB in 2011 and 2013
were previously reported (Schwacke et al., 2014; Smith et al.,
2017). For all years, health diagnostics included physical exami-
nation, length:mass ratio, serum biochemistry, hematology, and
ultrasonography (details in Appendix S1).

Fieldwork was conducted under NMFS permit numbers
18786-03 and 18986-04 (BB) and 522–1785 and 15543 (SB).
Protocols were approved by the National Oceanic and Atmo-
spheric Administration and Mote Marine Laboratory Institu-
tional Animal Care and Use Committees for BB and SB, respec-
tively.

Data are publicly available through GOMRI Infor-
mation & Data Cooperative (GRIIDC) https://data.
gulfresearchinitiative.org (https://doi.org/10.7266/
N7H41PTV,10.7266/n7-76aj-rp39,10.7266/n7-sv57-1h12).

Temporal trends in health

We compared each dolphin’s diagnostic results with estab-
lished reference intervals to identify health abnormalities, and
then experienced veterinarians (C.S., F.G., and F.T.) assigned
a prognostic score, providing a single integrated indicator of
overall health. As previously defined (Smith et al., 2017), the
prognosis categories were good (favorable outcome expected);
fair (favorable outcome likely); guarded (outcome uncertain);
poor (unfavorable outcome likely); and grave (death considered
imminent). Some physical examination abnormalities are within
expected limits for wild dolphins––such as minor rake marks,
mild tooth wear, or well-healed entanglement injuries. Findings
within expected limits from which the animals would survive or
make a full recovery were classified as a good or fair prognosis.
A guarded prognosis was assigned when the physical examina-
tion findings were of concern, such as moderate lung disease,
low body mass index, or multiple blood analyte abnormalities.
A poor or grave prognosis was assigned when indicators, such
as severe lung disease, active infection or serious injuries, and
severe blood analyte abnormalities, were present (Smith et al.,
2017) and the animal was considered unlikely to survive.

We created an additional binary variable to indicate good or
fair versus guarded, poor, or grave. Methods for prognosis scor-
ing are described by Smith et al. (2017) and additional details are
in Appendix S1.

Photo-ID images and associated data were analyzed as
described by McDonald et al. (2017). We categorized each dol-
phin as being alive in 2010 during the spill (pre-2010 cohorts) or
born after (post-2010 cohorts) (Appendix S1). We hypothesized
that BB pre-2010 dolphins have a higher prevalence of guarded-
or-worse prognoses than SB pre-2010 dolphins, but that post-
2010 dolphins do not differ. We also examined whether BB
2010 dolphin prognosis scores improved over time. For pre-
2010 cohorts, we modeled temporal trends in binary prognos-
tic score with a generalized additive model (GAM) (binomial

https://data.gulfresearchinitiative.org
https://data.gulfresearchinitiative.org
https://doi.org/10.7266/N7H41PTV,10.7266/n7-76aj-rp39,10.7266/n7-sv57-1h12
https://doi.org/10.7266/N7H41PTV,10.7266/n7-76aj-rp39,10.7266/n7-sv57-1h12
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FIGURE 1 Overview and information flow for population model of bottlenose dolphins in Barataria Bay under baseline and injured scenarios

response and logit link) with sex and site (BB or SB) as factor
covariates and a separate smooth function of year (2011–2018)
for each site (Appendix S1). For post-2010 cohorts, we could
not model temporal trends due to limited sample sizes, so we
fitted a binomial generalized linear model with covariates sex
and site.

Population dynamics model structure

We expanded on the age-, sex-, and class-structured matrix pop-
ulation model described by Schwacke et al. (2017) (Figure 1). We
used the same 61 age classes, but rather than the dichotomous
exposed or unexposed classes used by Schwacke et al. (2017), we
implemented three animal classes. Unexposed animals included
dolphins that were not exposed to DWH oil because they were
born after the spill and dolphins that were exposed but recov-
ered back to baseline survival and fecundity levels. Exposed and
recovering animals had reduced levels of survival and fecundity
immediately following the spill (in 2010) but gradually recov-
ered to baseline survival and fecundity levels. Exposed and not
recovering animals had reduced levels of survival and fecundity
in 2010 and remained at these reduced levels throughout their
life.

For unexposed dolphins, the transition from one age to the
next was age and sex specific. Survival probabilities were S f ,iand
Sm,i for age i = 0, … , 60 females and males, respectively. The
same survival probabilities were applied for the exposed classes
but were adjusted by multiplying by a survival factor (SF), which
could change over time. The survival rates for the exposed

classes for age i and year t were then:

S ′
f ,i

(t ) = SF (t ) ⋅ S f ,i

and

S ′m,i (t ) = SF (t ) ⋅ Sm,i (1)

for females and males, respectively. For the exposed and not
recovering class, SF remained constant over their lifetimes
(SF(t ) = SF1 for any t). For dolphins that eventually recovered
(exposed recovering class), SF increased as a function of t:

SF (t ) = min

[
1, SF1 +

t − 1
TR

(1 − SF1)
]
, (2)

where TR is the number of years before full recovery. Estima-
tions of SF1 and TR are detailed below.

Total population size in year t, summed over age, sex, and
exposure classes, is denoted as Nt , and the model starts in
year t = 0, which corresponds to 2010, just before the DWH
oil spill. Females reproduce and contribute new members to
the 0 age class through a DD fecundity function, f(Nt), which
decreases as population size increases and was applied for
females once they were above the age of sexual maturity. Similar
to survival probability, a probability of successful reproduction
was adjusted by a reproductive factor (RF):

f ′ (Nt ) = RF (t ) ⋅ f (Nt ) , (3)
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where RF(t ) = RF1 for the exposed and not recovering class
of females, but RF(t ) increases as a function of time for the
exposed recovering class:

RF (t ) = min

[
1,RF1 +

t − 1
TR

(1 − RF1)
]
. (4)

An alternative way to view the population model is in the
form of a matrix model (Caswell, 2001):

Nt+1 = PNt , (5)

where Nt is a vector containing the number of animals in each
age, sex, and exposure class at time t , and P is the population
projection matrix that projects the number of animals at time t

to the number at time t + 1. Elements of the matrix contain the
parameters for age-, sex-, and exposure-class specific survival
and fecundity. An advantage of this formulation is that analytic
methods exist (see Caswell, 2001) to determine the stable age
structure (i.e., expected proportion of animals in each class if
the projection matrix parameters are constant through time),
expected lifespan, and average age, all of which we used in the
population simulation.

To initialize the model, we sampled each input parameter
from a distribution (Table 1) estimated using methods detailed
below. Given the sampled input parameters, the number of dol-
phins in each age and sex class was obtained by assuming the
population was at its stable age distribution (i.e., by multiplying
N0 by the stable age proportions obtained from the dominant
right eigenvector of the model population projection matrix
given parameters for that year [Caswell, 2001]). The population
was not assumed to be at equilibrium in year 0 and so, given the
DD fecundity in the model, the population parameters were not
constant over time; hence, the population would not be exactly
at the stable age proportions. We undertook a small study (not
shown) to investigate the difference between this transient pop-
ulation structure and the stable age structure and found it was
negligible; therefore, we used the latter because it was available
analytically and far faster to generate.

To evaluate injury, we simulated forward for 50 years under
two scenarios: an oil spill (injured) scenario and a scenario
in which there was no oil spill (baseline scenario, all ani-
mals are unexposed). We calculated three metrics of injury as
described by Schwacke et al. (2017): maximum proportional
decrease (MPD), difference between the two population trajec-
tories when the injured trajectory is at its lowest point divided by
the baseline; years to recovery (YTR), number of years required
before the injured population trajectory reaches 95% of the
baseline population trajectory; and lost cetacean years (LCY),
sum of annual differences between baseline and injured popula-
tion sizes.

We repeated this procedure for each of 10,000 iterations, each
time simulating a set of realizations from the distributions of all
inputs, projecting forward under injured and baseline scenarios
and then calculating the injury metrics. The model was imple-
mented in R version 4.0.5 (R Development Core Team, 2021).

Full model code and input data, as well as R Markdown
documents describing how each component of the model was
assembled and code to generate the output figures, are available
at https://github.com/TiagoAMarques/CARMMHApapersSI
and have been uploaded to GRIIDC (https://doi.org/10.7266/
n7-rmv4-qx46).

Initial population size

No survey data existed from BB just before the DWH spill
that could be used to estimate prespill population size in 2010;
hence, other data sources had to be used to infer this quantity.
Schwacke et al. (2017) used the average population abundance
estimate from a Bayesian spatial capture-recapture (SCR) anal-
ysis of photo-ID data collected in BB from 2010 (postspill) to
2014, as reported by McDonald et al. (2017). The SCR analysis
for the BB population has been updated by Glennie et al. (2021),
who included additional data from later surveys, updated (like-
lihood based) analysis methods, and report estimates that are
model averaged among different plausible models. Similar to
McDonald et al.’s (2017) results, they found that population size
in the study area increased from 2010 to 2012, likely as animals
returned from peripheral areas outside of the photo-ID survey
area but still within the bay, once disturbance related to cleanup
operations subsided. We, therefore, took as the best estimate
of prespill population size the mean of the estimated popula-
tion size in mark-recapture primary periods 6 and 7 (midpoints
14 February 2012 and 15 April 2012). This is almost certainly
an underestimate of prespill population size because the total
population likely decreased in size between the time of the oil
spill (April 2010) and primary periods 6 and 7. Oiling in BB was
extensive (Nixon et al., 2016) and occurred outside the photo-
ID survey area. We, therefore, assumed that all dolphins in BB,
even if those that may have been outside of the photo-ID sur-
vey area during the first few primary periods, were exposed to
oil.

We used a parametric bootstrap procedure to generate ini-
tial population size (N0) values from the Glennie et al. (2021)
SCR models. Under the assumption that the maximum likeli-
hood estimates of the SCR models each followed a multivariate
normal distribution, 10,000 parameter sets were generated from
the fitted models. The number of samples from each model was
in proportion to its model weight (Glennie et al., 2021). Each
parameter set was used to derive estimates of population size
in primary periods 6 and 7, and these were averaged yielding
10,000 replicate population sizes for N0.

Age- and sex-specific baseline survival

Schwacke et al. (2017) obtained age- and sex-specific estimates
of survival under “baseline” conditions with age at death data
for stranded dolphins from five populations. In brief, Schwacke
et al. (2017) fit a Siler (1979) competing risk function, which is
based on the assumption that probability of surviving to a given
age is the product of three competing risks: an exponentially

https://github.com/TiagoAMarques/CARMMHApapersSI
https://doi.org/10.7266/n7-rmv4-qx46
https://doi.org/10.7266/n7-rmv4-qx46
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decreasing risk due to juvenile factors, a constant risk experi-
enced by all age classes, and an exponentially increasing risk due
to senescent factors. Schwacke et al. (2017) used Markov chain
Monte Carlo methods and 4000 posterior distribution combi-
nations of the Siler model parameters to compute probability of
a dolphin surviving to age xfor x = 1⋯ 60,independently for
males and females. Following Schwacke et al. (2017), we used
the 4000 resulting life tables as input values to the population
dynamics model, randomly drawing with replacement a paired
male and female lifetable for each population simulation.

Age at sexual maturity and reproductive senescence

The population model was based on the assumption that
females younger than a certain age at time t cannot produce
offspring in year t + 1; we refer to this as age at sexual matu-
rity (ASM). Although Schwacke et al. (2017) used a static value
(8 years), we made ASM an input parameter and estimated
a distribution for ASM values through a meta-analysis. We
searched the literature for studies that estimated ASM for bot-
tlenose dolphins either by undertaking necropsies on bycaught
or stranded animals and recording observations of ovarian scars
or by recording first observation of a calf for known-age indi-
viduals. For the live dolphin studies, we assumed calves were
observed immediately after birth, gestation time was 1 year,
and females first became pregnant immediately following sex-
ual maturity. Therefore, the estimate for ASM would be 1 year
prior to the first observation of a calf. There are three species of
bottlenose dolphins: T. truncatus, aduncus, and australis. Given that
species may differ in ASM, we retained only articles relating to T.

truncatus. We also excluded studies from captive animals because
they may reproduce earlier (e.g., if food conditions are better)
or later (if there is less social stimulus) than wild animals. Given
these criteria, we retained only two studies for meta-analysis: a
study based on necropsies of stranded animals from the U.S.
central Atlantic Coast (Mead & Potter, 1990) and a study based
on long-term monitoring (1982–2019) of 53 known-age females
from an SB, Florida (Lacy et al., 2021). For the Mead and Potter
(1990) data, a GAM was fitted with sexual maturity as a binary
response, age was modeled as a thin-plate regression spline, and
a logit link function was used. R. Wells supplied raw data (age of
each female when she was first observed with a calf) from the
analysis of Lacy et al. (2021), from which we calculated empirical
mean and SE. To combine the results, we took an inverse vari-
ance weighted mean and matched resultant mean and variance
with a corresponding gamma distribution for ASM. In each iter-
ation of the simulation, ASM was obtained by sampling a ran-
dom deviate from the gamma distribution and rounding to the
nearest integer.

Schwacke et al. (2017) assumed that females at age 48 and
older do not breed, based on data from SB. However, given the
small number of animals of that age studied, we did not assume
reproductive senescence in our model. Because there are very
few animals of this age in the simulated populations, whether
they are assumed to breed or not would have a negligible effect
on population trajectories.

Density-dependent baseline fecundity

We used the modified form of the Beverton–Holt function as
described by Schwacke et al. (2017), which does not require a
specific assumption about carrying capacity, to model fecundity
as a function of population size at time t:

f (Nt ) =
Fmax

1 + (𝛽 × Nt )𝜌
(6)

where

𝛽 =
1

Nnominal
×

(
Fmax − Fnominal

Fnominal

) 1

𝜌

(7)

and Fmax is the maximum achievable fecundity rate, Fnominal and
Nnominal are estimates of the fecundity and population size at
a particular point in time, and 𝜌 determines the shape of the
function. Following the approach of Schwacke et al. (2017), we
adopted beta-PERT distributions for Fmax and Fnominal and set
Nnominal as the N0.

Schwacke et al. (2017) identified the DD shape parameter as
being a major component of uncertainty in the injury metrics.
Therefore, to improve specification of this parameter, we under-
took a formal EE for 𝜌 (described below).

Reduced survival factor

The SF for exposed classes was calculated as the population
average survival measured in the first year after the spill, S1,
divided by population average baseline survival, Sbaseline:

SF1 =
S1

Sbaseline
. (8)

In practice, survival estimates for the entire population were
not available after the oil spill. Estimates from the SCR anal-
ysis of photo-ID data were available, but because such studies
can only be carried out on animals with distinctive markings on
their dorsal fins, younger individuals are underrepresented in the
photo-ID sample. Dolphins are not typically born with distinc-
tive fin markings, but acquire them during their lifetime. There-
fore, for calculating SF, we defined the population as being the
population of marked animals, and we assumed that SF was the
same across all age classes.

The estimate of S1 was obtained from SCR analysis of BB
dolphins by Glennie et al. (2021). We used estimated survival
between the first and second primary sampling periods, 26 June
2010–12 November 2010, annualized, to represent first year
postspill survival. This estimate was based on information from
the entire photo-ID time series because survival is assumed to
vary smoothly over time in the Glennie et al. (2021) models.
Multiple models were fit, and degree of smoothness in survival
over time varied among models. For the population model, we
used 10,000 survival estimates, sampling from each model in
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proportion to its model weight and so accounting for uncer-
tainty in the smoothness.

Estimates of age- and sex-specific baseline survival were
available from the Siler model. We had to average these in an
appropriate way to produce an estimate of baseline survival for
the cohort of the population that was marked. This required
accounting for proportion of animals in each age and sex class
and probability of an animal being marked as a function of age
and sex. For the former, we used stable age and sex distribution
obtained from the baseline population dynamics model for t =

0. For the latter, we undertook an analysis of data on presence
and absence of marks for known-age dolphins. We analyzed age
data from 54 dolphins in BB ranging in from 2.5 to 42 years
with recorded presence or absence of distinctive marks, such as
would be used in photo-ID surveys. We then used binary regres-
sion to estimate probability of being marked as a function of age.
Preliminary modeling indicated no evidence for sex differences,
so both sexes were analyzed together. An absence of very young
animals made prediction difficult for these ages. Therefore, the
models were constrained, so probability of being marked at age
0 was fixed at 0. A GAM was used with presence or absence of
marking as the response variable, age as the explanatory variable
modeled as a cubic regression spline, and a logit link function.
From the fitted model, 10,000 parametric bootstrap resamples
were generated (Appendix S2). The Sbaseline was calculated as
the weighted average of age- and sex-specific baseline survival
values. Weights were given by the expected proportion of dol-
phins in each age or sex class at t0 multiplied by the estimated
probability of being marked for the given class.

Reduced reproduction factor

Fecundity of reproductive age females in the year after the oil
spill was assumed to be equal to the DD fecundity, f (Nt ), mul-
tiplied by a reduced reproductive success factor:

RF1 =
R1

Rbaseline
, (9)

where R1 is reproductive success in the first year postspill and
Rbaseline is a baseline reproductive success for dolphins not
exposed to DWH oil. Following Schwacke et al. (2017), we
derived reproductive success rates from results reported by Kel-
lar et al. (2017) for dolphins from reference sites not exposed to
oil (Rbaseline) and from observed reproductive success in the first
3 years postspill at BB and Mississippi Sound (R1). For both
quantities, we had observations on number of trials, N, and
number of successes, n. These naturally induced an observed
proportion of successes: p= n/N. We used these to parametrize
a beta distribution for reproduction success probability before
and after the oil spill. The corresponding beta distribution has
mean and SD that would correspond to a binomial distribu-
tion with N and p as observed. Reproductive success differed
from fecundity in that the former was the probability a preg-
nant female successfully gives birth, whereas the latter was the
probability a reproductive age female in year t gives birth to a
calf in year t + 1.

Expert elicitation

To address uncertainty in two highly sensitive parameters for
which direct empirical data did not exist, we conducted for-
mal EEs. Expert elicitation is a structured process by which
expert knowledge regarding an uncertain quantity is translated
into a probability distribution. It has been applied in a range
of scientific fields when there is urgent need for management
decisions but data are lacking (Booth & Thomas, 2021; Martin
et al., 2012). The parameters elicited were shape of DD fecun-
dity function (ρ) and proportion of the population that would
eventually recover to baseline survival (PR).

We conducted two workshops, one with six experts in
cetacean population biology and dynamics to address DD
fecundity and the other with six experts in marine mam-
mal health and physiology to address the recovery of dol-
phin health state. The design of the elicitation followed the
methods of Booth and Thomas (2021) and is summarized
below. Experts were informed of the purpose of the elicita-
tion and invited to participate. Informed consent was obtained
from all participants involved in the study (compliant with
the framework outlined in title 45 U.S. Code of Federal
Regulations 46.116).

The panels were designed such that a comprehensive cov-
erage of opinions could be achieved (following guidance in
Gosling, 2018), meaning expert knowledge spanned bottlenose
dolphin ecology and the fields of population biology, demog-
raphy, epidemiology, animal physiology, and veterinary science.
Each group of experts was provided with an evidence dossier
summarizing available background knowledge on DD relation-
ships in mammalian populations (for ρ) and the analyses of tem-
poral trends in prognoses scores for dolphins born prior to
and following the DWH oil spill (for PR). In discussion with
the experts, the scope of the elicitation, definitions, and ques-
tions were clarified to ensure linguistic uncertainty was removed.
Once questions were finalized, experts provided judgments
through variable-interval methods for the quantity of interest.
Experts used a shiny app to anonymously submit their judg-
ments, which were subsequently fit as probability distributions
with SHELF software (Gosling, 2018). All fitted distributions
were anonymized and presented to the group, and each expert
was invited to provide their rationale for their judgments. These
rationales were discussed as a group to reach consensus of what
would be a rational view of an impartial observer who had been
party to all information presented and discussed (details in Ast-
falck et al., 2018).

The BB population is among 31 bay, sound, and estuary pop-
ulations of common bottlenose dolphins in the northern Gulf
of Mexico (NOAA, 2019). Experts agreed to the wording of
questions and provided judgments to estimate the shape of DD
response: “Given that the value of Rho will affect the shape
of the DD response of fecundity in a bay, sound, and estuary
bottlenose dolphin population, what do you judge to be the
most appropriate value for Rho?” To estimate proportional
recovery in survival probability of those affected by DWH oil-
ing, the question was “Think about a Barataria Bay bottlenose
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dolphin whose health has been impacted by the DWH oil spill
and has a guarded, poor or grave prognosis in the first year or
2 after the DWH spill. Going forward, in the animal’s lifetime,
what is the probability that it has a good or fair prognosis?”

Because the second question was framed in terms of propor-
tion of animals that may recover during their lifetime, we needed
to determine average remaining lifespan of a dolphin alive at the
time of the DWH spill to implement recovery in the model. The
average remaining lifespan was used as TR; that is, we assumed
dolphins in the recovering class that are still alive TR years after
the oil spill will have made a full recovery and will have base-
line levels of survival and fecundity. Average remaining lifespan
was calculated as average total lifespan minus average current
age––both of these quantities were in turn calculated from the
population projection matrix at t = 0.

Population model sensitivity analyses

We conducted an uncertainty analysis to evaluate how uncer-
tainty on each input parameter affected the injury metrics. For
each parameter, we sampled from the input distribution and ran
the model, holding all other parameters at their nominal value
(i.e., point estimates in Table 1). We also conducted an elastic-
ity analysis to evaluate proportional change in each injury met-
ric resulting from a 1% increase in each variable (i.e., nominal
value ± 0.5%) while holding all other variables at nominal val-
ues. The uncertainty analysis was useful because it pointed to
which variables caused the greatest uncertainty in injury metrics.
This uncertainty had two causes: variability in the input variable
and sensitivity of the injury metric to variation in the input vari-
able. The elasticity analysis was useful because it allowed us to
isolate the second of these.

RESULTS

Temporal trends in health data

In the decade following the DWH spill, we conducted 262
assessments that included sufficient data for assignment of
health prognosis score on dolphins in BB (n = 171) and SB
(n = 91) (Appendix S1).

For dolphins alive when the spill occurred, the BB cohort
had a higher prevalence of guarded, poor, or grave prognoses
than the SB cohort (p<0.0001), and prevalence changed over
time (p = 0.02) (Figure 2 & Appendix S1). The prevalence
decreased in the first years following the spill (2013–2014),
but then increased, reaching a maximum of 78% in 2018
(Figure 2a). Several disease conditions contributed to the
guarded, poor, and grave scores in BB pre-2010 dolphins; lung
disease weighed heavily in prognosis assignment (Smith et al.,
2021). Other primary concerns included inflammation and
anemia. In contrast, the SB pre-2010 cohort had few guarded
and no poor or grave scores (Figure 2b), and although the
prevalence of guarded prognoses was higher in 2016–2018

FIGURE 2 Probability of guarded, poor, or grave prognoses across years
for cohorts of bottlenose dolphins born prior to the Deepwater Horizon oil spill
in 2010 and prevalence for the cohort of dolphins born after 2010 (post, all
years combined) in (a) Barataria Bay and (b) Sarasota Bay (fitted curves,
predicted values; dashed-line curves, 95% CIs from generalized additive model
with separate smoothing splines for sampling year [Barataria Bay p = 0.02,
Sarasota Bay p = 0.09]; vertical dashed lines, postspill cohorts’ 95% binomial
confidence intervals)

compared with earlier years, there was no strong evidence of a
temporal trend (p = 0.09). For post-2010 cohorts, there was no
significant difference in prevalence of guarded, poor, or grave
scores between BB and SB (p = 0.19).

Age of sexual maturity

From the necropsy data, the mean (SE) estimated age at which
probability of being sexually mature was 50% was 7.76 years
(1.51) (obtained via parametric bootstrap).

For the observational data from SB, mean (SE) age of first
observing a calf was 9.60 years (0.27). This produced a mean
ASM of 8.60 (0.27).

Combining the results from the two studies, we estimated an
inverse variance weighted mean (SE) ASM of 8.57 years (0.27).
Given that the estimated SE was so much larger in the estimate
from the necropsy data than the SB live dolphin data, the com-
bined result was very close to that from the SB data alone. The
fit to a gamma distribution yielded a shape parameter of 980.4
and scale parameter of 0.00875 (Table 1).
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Density-dependent fecundity

The population biology experts agreed that reproductive invest-
ment would be reflected in interbirth intervals and that as popu-
lations approach carrying capacity (K), resource limitations and
increased risk of disease would start to affect populations. They
considered it unlikely that DD effects would occur until a pop-
ulation gets relatively close to K, giving a concave DD fecun-
dity function (i.e., with ρ > 3). Experts considered pregnan-
cies in bottlenose dolphins were, energetically, relatively low cost
and resource limitations would not be experienced until getting
closer to what the habitat can support (>75% of K). Experts
also noted that social structure in bottlenose dolphin popu-
lations might result in fecundity remaining high even as they
approach K. Specifically, that social relationships and spending
time in groups are beneficial to reproductive success (Mann
et al., 2000; Wells, 2014). Therefore, at higher densities, repro-
ductive females may be more resilient to resource limitations.
The EE exercise produced a distribution for ρ with a mean of
9.94, which is higher than the estimate of 6 used by Schwacke
et al. (2017) (Figure 3a). Higher values for ρ would allow a pop-
ulation to recover more quickly to K (Figure 3b).

Reduced survival and reproduction factors

The estimated SF for the first year following the spill was
0.868 (95% CI 0.737–0.964). The estimated RF for the first year
was 0.694 (95% CI 0.438–0.875).

Proportion that recover

Experts for the health-recovery elicitation discussed the under-
lying conditions (particularly endocrine and pulmonary effects)
that influence prognoses scores, processes that could inhibit
recovery, and considered the likelihood that the types of disease
conditions observed were fully recoverable or not. Specific cases
of individual dolphins that had been sampled across multiple
years, some of which showed improving condition and some of
which did not (Smith et al., 2017), were discussed. The experts
agreed the probability that the average dolphin would recover
was low but that animals with guarded prognoses might be more
likely to recover versus those with poor or grave prognosis. This
resulted in a skewed distribution with some weight allowing for
greater likelihood that animals might recover (Figure 4).

Population model outputs, uncertainty, and
elasticity

Estimated MPD was 0.45 (95% CI 0.14–0.74) and would occur
about 10 years postspill and take 35 years (95% CI 18–67) for
95% recovery (Figure 5). The LCY due to the spill was 30,993
(95% CI 6607–94,148). Median predicted population size in
year 9 following the spill was 1816 (95% CI 893–2801). In com-
parison, SCR analyses provided an abundance estimate of 2099
(95% CI 1852–2505) based on photo-ID surveys conducted in

FIGURE 3 Probability distributions of the (a) consensus of the expert
elicitation for density-dependence shape parameter, ρ, for a bay, sound, and
estuary population of bottlenose dolphins compared with ρ values from
Schwacke et al. (2017) and (b) corresponding mean function of fecundity
versus population size for the Barataria Bay dolphin population obtained by
sampling values of ρ from the distributions in (a), for which Nnominal = 3045
(dotted vertical line), Fnominal = 0.24, and Fmax = 0.34 (dotted horizontal lines)

FIGURE 4 Elicited distribution for the probability of recovery over a
lifetime for Barataria Bay dolphins exposed to Deepwater Horizon oil

2019 (Glennie et al., 2021). We used the analyses of Glennie
et al. (2021) to derive N0, but we did not use their SCR abun-
dance estimates in subsequent years to fit population trajectory.
In this sense, our population model prediction and the SCR esti-
mate for 2019 can be considered independent.
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FIGURE 5 Median predicted size for the Barataria Bay dolphin
population under baseline scenario (blue line) and Deepwater Horizon injury
scenario (red line) from 10,000 simulations (shading, 95% CIs; dashed vertical
line, years to recovery; dashed arrow, maximum proportional decrease; black
dots, population abundance estimates from spatial capture-recapture (Glennie
et al., 2021); solid vertical lines, 95% CIs). The year 0 estimate was used to
initialize the population simulations, but the year 9 estimate was not used
directly in the population model

Postspill survival (S1) generated the greatest uncertainty in
output metrics, particularly for LCY, and had relatively high
elasticity (Appendix S3). This parameter estimate comes from
the SCR analysis of photo-ID data (Glennie et al., 2021), and
confidence intervals were quite wide (95% CI 0.70–0.91). This
uncertainty in S1 combined with its high elasticity meant that it
was the biggest contributor to overall uncertainty in injury.

Baseline age- and sex-specific survival (S f and Sm) had the
highest elasticity values for LCY and YTR, although their con-
tribution to uncertainty was lower than S1 because these param-
eter estimates were more precise (e.g., SD on SBaseline), which
was essentially a weighted average of S f and Sm values, was an
order of magnitude lower than that of S1. The one exception in
elasticity was MPD, for which elasticity on S1 was larger than
S f and Sm . In this case, S1 was a more important determinant
of MPD, which occurs close to the beginning of the postspill
timeline, whereas baseline survival became more important in
predicting injury metrics associated with time to recovery, YTR,
and to a lesser extent LCY.

Remaining parameters had lower elasticities; consequently,
contributions to output uncertainty came primarily from higher
uncertainty in input parameters. Higher values of 𝜌 elicited at
the EE meant that this parameter had much lower elasticity
compared with the Schwacke et al. (2017) model. Because a
given level of variation in 𝜌 produces smaller differences in DD
population trajectories at high 𝜌 than low 𝜌 (Figure 3b), this
parameter also contributed far less to overall uncertainty than in
the Schwacke et al. (2017) model.

DISCUSSION

Like most large mammals, dolphins display traits of slow-living
species (Stearns, 1992) in that they mature late, produce a sin-
gle offspring at a time, invest multiple years in care of each
offspring, and are long-lived. Therefore, acute mortality alone,
particularly affecting adult females, can produce population

declines that require years for recovery. Our results suggest that
lower survival is a continuing problem for BB dolphins alive
during the DWH spill and has led to a continued population
decline even 9 years postspill. Even when these animals are
replaced by those born after the spill, it will take decades to
recover baseline population numbers. Empirical data support
our model’s predictions. The most recent abundance estimate
(Glennie et al., 2021) is 30.9% lower (95% CI 22.1–39.5) than
prespill (Figure 5). Similar declines were seen in killer whales
(Orcinus orca) in years following the Exxon Valdez oil spill; nei-
ther of the affected pods recovered within 16 years (Matkin
et al., 2008). Because studies following the Exxon Valdez spill
were unable to conduct hands-on health assessment or even
recover carcasses for necropsy, links among oil exposure, phys-
iological effects, survival, and population decline were circum-
stantial. In the absence of physiological data, small population
size and demographic factors, rather than chronic toxic effects,
were proposed as underlying mechanisms for a lack of recov-
ery (Esler et al., 2018). The DWH spill, while tragic, offered an
opportunity to directly study toxic effects and better understand
long-term consequences of oil and associated chemical expo-
sure on cetacean health, survival, and reproduction––factors
that ultimately drive population recovery. Our findings of con-
tinued chronic and potentially progressive disease in dolphins
exposed to oil provide insight into why it can take so long for
animals to recover.

We applied a series of innovative analysis approaches, includ-
ing a formal EE, to data collected in the decade following the
DWH spill to refine input parameters for a multiclass struc-
tured population model. The time series data confirmed that
some disease conditions became chronic and progressed over
time, and expert input provided interpretation for the conse-
quences. Specifically, lung disease, presumably from inhalation
and aspiration of oil, did not improve, and in some cases, wors-
ened over time (Smith et al., 2021). This finding was key to
experts’ conclusion that probability of an exposed individual
ever fully recovering to baseline health was low. The experts also
agreed that reproductive recovery would likely follow the tra-
jectory for survival, consistent with findings that reproductive
success is closely related to maternal health (Barratclough et al.,
2021). Lack of recovery of individuals exposed to oil implies
population recovery must rely on emergence and sexual matu-
ration of a healthier cohort almost entirely founded from post-
spill progeny. Fortunately, our data support that health of post-
spill progeny is comparable to health of similar age dolphins
from a comparison site not exposed to DWH oil. However, an
investigation of functional immune responses, which used sam-
ples from the same dolphin health assessments, suggests exag-
gerated Th2 responses in unexposed BB dolphin offspring, like
those in the prespill cohort, which may increase the susceptibil-
ity to infectious disease (De Guise et al., 2021). It is possible that
insufficient time has passed for clinical symptoms to manifest in
dolphins born postspill.

Differences in injury metrics we obtained from our model
versus those of Schwacke et al. (2017) were not large and pri-
marily arose as a consequence of additional knowledge gained
in the intervening period (Appendix S4). The new estimate for
shape of the DD fecundity function from the EE was larger
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than estimates used by Schwacke et al. (2017), which had been
based on a model previously fitted for DD pup survival in
gray seals (Halichoerus grypus). Larger values of 𝜌 will produce
smaller injury metrics because they will allow populations to
recover more quickly to carrying capacity. However, this was
balanced by a slightly higher estimate for ASM (8.6 vs. 8.0
years used by Schwacke et al., 2017) and a lower estimate for
S1, both of which serve to slightly increase injury metrics. Our
updated input information and refined analyses validated and
reinforced the original assessment that the DWH spill caused
tens of thousands of lost cetacean years, that approximately
halved the dolphin population at its low point, and that it will
take 3–4 decades for the population to recover without effec-
tive restoration efforts.

The ultimate goal of an NRDA is to determine the appro-
priate type and amount of restoration needed to return nega-
tively affected natural resources, including animal populations,
to their original condition. Our model construct is well-suited to
integrate potential changes in vital rates over time and could be
easily adapted to evaluate proposed restoration plans and what
influence they might have on the recovery trajectory. The cur-
rent focus for DWH restoration in Louisiana is a project involv-
ing sediment diversion from the Mississippi River to rebuild
wetlands (Cornwall, 2021). The planned project will substan-
tially reduce salinity and has been forecast to decrease dolphin
annual survival by 34% after implementation (Garrison et al.,
2020). This level of impact is clearly unsustainable and would
result in population depletion rather than restoration.

Much can be learned about oil spill effects in marine
mammals from the DWH injury assessment and subsequent
research. Foremost, we have shown that previously understud-
ied inhalation and aspiration exposure pathways are important
and that pulmonary effects are likely to be long-lasting, decrease
survival and reproduction, and ultimately impede population
recovery. Our results demonstrate the importance of effective
response, long-term investment to monitor recovery, effective
restoration options, and monitoring of restoration performance
for adaptive management.

From this, we provide recommendations for managing future
chemical spills that affect cetacean habitat. For oil spill response
efforts, we recommend the identification of methods to elim-
inate surface oil quickly to minimize inhalation and aspiration
of oil. The application of dispersants is controversial because of
perceived toxicity risk and increased risk for respiratory effects
(Alexander et al., 2018). Further research is needed to evaluate
benefits and risks of dispersants, specifically for mammals.

More generally for NRDA injury assessment, likely long-term
health implications and life history traits must be considered in
assessing injury and allocating restoration resources. The pop-
ulation model we described not only provides metrics of long-
term population-level effects, but also demonstrates a frame-
work for inclusion of expert knowledge for parameters with
high uncertainty due to lack of empirical data. Although our
model was developed for dolphins, it is applicable for other
species with similar life history traits.

Our sensitivity analyses showed that uncertainty in post-
spill survival was the largest determinant of uncertainty in
population injury. For long-lived species, small changes in

adult survival create large changes in population trend (i.e.,
high elasticity [Caswell, 2001]). Obtaining precise estimates of
time-varying survival is difficult at the start of capture-recapture
studies when the catalog of known individuals is small. There-
fore, in future similar situations when the study is only initiated
after the spill, initial field efforts to build a robust photo-ID
catalog are critical and great effort should be dedicated to
follow as many individuals as possible from the start.

Finally, increased susceptibility of individuals, which we
found comes from injuries that are likely to be lifelong condi-
tions, must be monitored long term, so that restoration projects
can be adapted over time, and should be considered in restora-
tion planning. In the near-term, restoration efforts for cetaceans
must focus on reduction of other stressors (e.g., other pollu-
tants, marine debris, and fishing gear) to prevent worsening
health and population risk because there are no proven medical
interventions to address persistent disease conditions associated
with oil exposure. However, the DWH spill has highlighted the
need to develop such intervention strategies, and this should be
a priority research area.
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