1,410 research outputs found

    Effect of B on the microstructure and mechanical properties of mechanically milled TiAl alloys

    Get PDF
    The present study is concerned with gamma-(Ti52Al48)(100-x)B-x (x = 0, 0.5, 2, 5) alloys produced by mechanical milling/vacuum hot pressing (VHPing) using melt-extracted powders. Microstructure of the as-vacuum hot pressed (VHPed) alloys exhibits a duplex equiaxed microstructure of alpha(2) and gamma with a mean grain size of 200 nm. Besides alpha(2) and gamma phases, binary and 0.5 pet B alloys contain Ti,AIN and Al2O3 phases located along the grain boundaries and show appreciable coarsening in grain and dispersoid sizes during annealing treatment at 1300 degrees C for 5 hours. On the other hand, 2 pet B and 5 pet B alloys contain fine boride particles within the gamma grains and shaw minimal coarsening during annealing. Room-temperature compressing tests of the as-VHPed alloys show low ductility, but very high yield strength > 2100 MPa. After annealing treatment, mechanically milled alloys show much higher yield strength than conventional powder metallurgy and ingot metallurgy processed alloys, with equivalent ductility to ingot metallurgy processed alloys. The 5 pet B alloy with the smallest grain size shows higher yield strength than binary alloy up to the test temperature of 700 degrees C. At 850 degrees C, 5 pet B alloy shows much lower strength than the binary alloy, indicating that the deformation of fine 5 pet B alloy is dominated by the grain boundary sliding mechanism.ope

    Molecular lens applied to benzene and carbon disulfide molecular beams

    Get PDF
    A molecular lens of the nonresonant dipole force formed by focusing a nanosecond IR laser pulse has been applied to benzene and CS2 molecular beams. Using the velocity map imaging technique for molecular ray tracing, characteristic molecular lens parameters including the focal length (f ), minimum beam width (W), and distance to the minimum beam width position (D) were determined. The laser intensity dependence of the observed lens parameters was in good agreement with theoretical predictions. W was independent of the laser peak intensity (I-0), whereas f and D varied linearly with 1/I-0. The differences in lens parameters between the molecular species were well correlated with the polarizability per mass values of the molecules. A high chromatographic resolution of Rs = 0.84 was achieved between the images of benzene molecular beams undeflected and deflected by the lens. The possibilities for a new type of chromatography are discussed.open293

    Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1 beta

    Get PDF
    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (Delta ppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after Delta ppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1 beta and TNF-alpha were markedly increased in tumors colonized by Delta ppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1 beta and TNF-alpha returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1 beta and TNF-alpha. We found that macrophages and dendritic cells were the main producers of TNF-alpha and IL-1 beta. Inhibiting IL-1 beta production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1 beta or TNF-alpha in conjunction with Salmonella therapy. These findings suggested that IL-1 beta and TNF-alpha play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy.111715Ysciescopu

    Built-in and induced polarization across LaAlO3_3/SrTiO3_3 heterojunctions

    Full text link
    Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar \lao ~thin films grown on \sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93 meV/\AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in \sto, illuminating a unique property of \sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201

    Addiction Treatment and Stable Housing among a Cohort of Injection Drug Users

    Get PDF
    Background: Unstable housing and homelessness is prevalent among injection drug users (IDU). We sought to examine whether accessing addiction treatment was associated with attaining stable housing in a prospective cohort of IDU in Vancouver, Canada. Methods: We used data collected via the Vancouver Injection Drug User Study (VIDUS) between December 2005 and April 2010. Attaining stable housing was defined as two consecutive ‘‘stable housing’ ’ designations (i.e., living in an apartment or house) during the follow-up period. We assessed exposure to addiction treatment in the interview prior to the attainment of stable housing among participants who were homeless or living in single room occupancy (SRO) hotels at baseline. Bivariate and multivariate associations between the baseline and time-updated characteristics and attaining stable housing were examined using Cox proportional hazard regression models. Principal Findings: Of the 992 IDU eligible for this analysis, 495 (49.9%) reported being homeless, 497 (50.1%) resided in SRO hotels, and 380 (38.3%) were enrolled in addiction treatment at the baseline interview. Only 211 (21.3%) attained stable housing during the follow-up period and of this group, 69 (32.7%) had addiction treatment exposure prior to achieving stable housing. Addiction treatment was inversely associated with attaining stable housing in a multivariate model (adjusted hazard ratio [AHR] = 0.71; 95 % CI: 0.52–0.96). Being in a partnered relationship was positively associated with the primary outcom

    Spatial statistical modelling of capillary non-perfusion in the retina

    Get PDF
    Manual grading of lesions in retinal images is relevant to clinical management and clinical trials, but it is time-consuming and expensive. Furthermore, it collects only limited information - such as lesion size or frequency. The spatial distribution of lesions is ignored, even though it may contribute to the overall clinical assessment of disease severity, and correspond to microvascular and physiological topography. Capillary non-perfusion (CNP) lesions are central to the pathogenesis of major causes of vision loss. Here we propose a novel method to analyse CNP using spatial statistical modelling. This quantifies the percentage of CNP-pixels in each of 48 sectors and then characterises the spatial distribution with goniometric functions. We applied our spatial approach to a set of images from patients with malarial retinopathy, and found it compares favourably with the raw percentage of CNP-pixels and also with manual grading. Furthermore, we were able to quantify a biological characteristic of macular CNP in malaria that had previously only been described subjectively: clustering at the temporal raphe. Microvascular location is likely to be biologically relevant to many diseases, and so our spatial approach may be applicable to a diverse range of pathological features in the retina and other organs

    Atomically dispersed Pt-N-4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction

    Get PDF
    Chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have been widely used as CER catalysts, they suffer from the concomitant generation of oxygen during the CER. Herein, we demonstrate that atomically dispersed Pt-N-4 sites doped on a carbon nanotube (Pt-1/CNT) can catalyse the CER with excellent activity and selectivity. The Pt-1/CNT catalyst shows superior CER activity to a Pt nanoparticle-based catalyst and a commercial Ru/Ir-based MMO catalyst. Notably, Pt-1/CNT exhibits near 100% CER selectivity even in acidic media, with low Cl- concentrations (0.1M), as well as in neutral media, whereas the MMO catalyst shows substantially lower CER selectivity. In situ electrochemical X-ray absorption spectroscopy reveals the direct adsorption of Cl- on Pt-N-4 sites during the CER. Density functional theory calculations suggest the PtN4C12 site as the most plausible active site structure for the CER

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
    corecore