120 research outputs found

    The great American debate: A constructionist approach on the media\u27s coverage of government bailouts

    Get PDF
    Historically, the term bailout has been used to define the rescuing of an organization in financial distress. A rescue implies that a bailout is voluntary. However, by all accounts, the bailouts in the past nine months have not been voluntary. Media outlets are using the words \u27bailout\u27 and \u27rescue\u27 interchangeably. Through claims-making and by using the words rescue and bailout interchangeably, the media has socially constructed the word rescue as synonymous with the word bailout and has implied that the bailouts were voluntary and necessary to avert economic disaster and have constructed a social problem. This paper will examine the behavior of the mass media with regard to the federal bailout through a social constructionist approach. It will focus specifically on the overall outcomes of the social constructions of the bailout and compare media coverage before and after the presidential campaign. My examination of the mass media\u27s behavior will compare two print newspapers (the New York Times and the Wall Street Journal) and two national news media outlets (FOX News and MSNBC) that represent both a liberal and a conservative point of view from the time period September 2007 to June 2009

    Tribological Properties of WC-Co/NiCrBSi and Mo/NiCrBSi Plasma Spray Coatings under Boundary Lubrication Conditions

    Get PDF
    The tungsten carbide based WC-Co/NiCrBSi (50/50) and molybdenum based Mo/NiCrBSi (75/25) coatings were investigated under boundary lubricated sliding conditions, and their tribological properties were analysed and compared. These two coatings are in service for a long time, but there are very few papers dealing with their tribological properties, especially in lubricated sliding conditions. The NiCrBSi self-fluxing alloy is one of the popularly used materials for thermal sprayed coating, with relatively high hardness, reasonable wear resistance and high temperature corrosion. Tungsten carbide (WC) is one of the most widely used commercial hard coating materials, and is added to the NiCrBSi coating to improve its hardness and wear resistance. Molybdenum (Mo) is added to the NiCrBSi coating to reduce its coefficient of friction, i.e. to improve its dry sliding wear resistance. The results showed that WC-Co/NiCrBSi coating was more wear resistant, but caused higher wear of the counter-body material. Coefficients of friction were similar for both coatings

    Thermal manifestations and nanoindentation of bone cements for orthopaedic surgery

    Get PDF
    Improving of bone cements properties is possible by research of variables influencing exothermal behaviour and mechanical properties. Paper deals with exothermal behaviour experimental evaluation of bone cements used for medical purposes. Specimens were prepared by a conventional manual mixing technique. The work addresses primary risk factor associated with application of bone cement to femoral canal. Different size samples of bone cement has been created with diameter d = 2; 5;12,5 mm fixed in dentacryl. As an experimental material, Palacos R+G high viscosity, radiopaque bone cement containing Gentamicin and Radiopaque bone cement Antibiotic Simplex with Tobramycin, was used. Thermal effect during exothermic polymerisation was measured with period I minute. Evaluated factors were mass and thickness of bone cement. Significant influence of bone cement mass on temperature has been found

    Thermal manifestations and nanoindentation of bone cements for orthopaedic surgery

    Get PDF
    Improving of bone cements properties is possible by research of variables influencing exothermal behaviour and mechanical properties. Paper deals with exothermal behaviour experimental evaluation of bone cements used for medical purposes. Specimens were prepared by a conventional manual mixing technique. The work addresses primary risk factor associated with application of bone cement to femoral canal. Different size samples of bone cement has been created with diameter d = 2; 5;12,5 mm fixed in dentacryl. As an experimental material, Palacos R+G high viscosity, radiopaque bone cement containing Gentamicin and Radiopaque bone cement Antibiotic Simplex with Tobramycin, was used. Thermal effect during exothermic polymerisation was measured with period I minute. Evaluated factors were mass and thickness of bone cement. Significant influence of bone cement mass on temperature has been found

    Case Notes

    Get PDF

    Surface integrity of Mg-based nanocomposite produced by Abrasive Water Jet Machining (AWJM)

    Get PDF
    This paper investigates the influence of jet traverse speed on the surface integrity of 0.66 wt% Al2O3 nanoparticle reinforced metal matrix composite (MMC) generated by Abrasive Water Jet Machining (AWJM). Surface morphology, surface topography, and surface roughness (SR) of the AWJ surface were analyzed. The machined surfaces of the nanocomposites were examined by laser confocal microscope and field emission scanning electron microscope (FESEM). Microhardness and elasticity modulus measurement by nanoindentation testing were also performed across thickness of the samples to see depth of the zone, affected by AWJ cutting. The result reveals that extent of grooving by abrasive particle and irregularity in AWJ machined surface increases as the traverse speed increased. Similarly, the rise in value of surface roughness parameters with traverse speed was also seen. In addition, nanoindentation testing represents the lower hardness and elastic modulus due to softening occurs in AWJ surface

    Experimental in-vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty

    Get PDF
    The paper deals with the study of using the selective property of ultrasonic pulsating water jet for the disintegration of the interface created by bone cement between cemented femoral stem and trabecular bone tissue as a potential technique for revision arthroplasty. Six types of commercial bone cements based on Polymethyl Methacrylate were used for investigation. The cements were mixed using the DePuy - SmartMix (R) CTS / vacuum mixing bowl. Mechanical properties of hardened bone cements were determined by nanoindentation. The bone cement samples were disintegrated using the pulsating water jet technology. The water pressure varied between 8 divided by 20 MPa. A circular nozzle with an orifice diameter of 0,7 mm was used for water jetting. The stand-off distance from the target material was 2 mm and the traverse speed 1 mm/s. The volume of material removal and depth of created traces were measured by MicroProf FRT optical profilometer. The results positively support an assumption that pulsating water jet has a potential to be a suitable technique for the quick and safe disintegration of bone cement during revision arthroplasty

    Flash spark plasma sintering of UHTCs

    Get PDF
    During the five year XMat research project supported by EPSRC (Engineering and Physical Sciences Research Council, UK) at Queen Mary we developed a novel sintering technique called Flash Spark Plasma Sintering (FSPS[1]) which is particularly suitable for the ultrarapid (a few seconds) consolidation of UHTCs. As in the case of incandescent lamps, flash sintering techniques use localized Joule heating developed within the consolidating particles using typically a die-less configuration. Heating rates are extreme (104–106 °C/min), and the sintering temperature is therefore reached extremely rapidly. The research covered mostly metallic conductors (ZrB2[2], HfB2,TiB2) and semiconductors (B4C, SiC and their composites). The talk will summarize the joint XMat team efforts to: -Identify the FSPS consolidation mechanism using modelling and transmission electron microscopy, -Characterise the structural properties for the bulk materials and redefine the structure-property relationships of FSPSed materials Please click Additional Files below to see the full abstract

    Effect of CNFs content on the tribological behaviour of spark plasma sintering ceramic-CNFs composites

    Get PDF
    Alumina-carbon nanofibres (CNFs) and silicon carbide-CNFs nanocomposites with different volume fraction of CNFs (0-100vol.%) were obtained by spark plasma sintering. The effect of CNFs content on the tribological behaviour in dry sliding conditions on the ceramic-carbon nanocomposites has been investigated using the ball-on-disk technique against alumina balls. The wear rate of ceramic-CNFs nanocomposites decreases with CNFs increasing content. The friction coefficient of the Al 2O 3/CNFs and SiC/CNFs nanocomposites with high CNFs content was found to be significantly lower compared to monolithic Al 2O 3 and SiC due to the effect of CNFs and unexpectedly slightly lower than CNFs material. The main wear mechanism in the nanocomposite was abrasion of the ceramic and carbon components which act in the interface as a sort of lubricating media. The experimental results demonstrate that the addition of CNFs to the ceramic composites significantly reduces friction coefficient and wear rate, resulting in suitable materials for unlubricated tribological applications. © 2011.This work has been carried out with financial support of National Plan Projects MAT2006-01783 and MAT2007-30989-E and the Regional Project FICYT PC07-021. A. Borrell acknowledges the Spanish Ministry of Science and Innovation for her FPI Ph.D. grant. We would like to thank the people from Institute Technological of Materials (ITM) of the Polytechnic University of Valencia for helping us with the tribology experiments during A. Borrell's short stay in 2009.Borrell Tomás, MA.; Torrecillas, R.; Rocha, VG.; Fernandez, A.; Bonache Bezares, V.; Salvador Moya, MD. (2012). Effect of CNFs content on the tribological behaviour of spark plasma sintering ceramic-CNFs composites. Wear. 274:94-99. https://doi.org/10.1016/j.wear.2011.08.013S949927

    Metabolic Flux Analysis of Mitochondrial Uncoupling in 3T3-L1 Adipocytes

    Get PDF
    BACKGROUND:Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear. METHODOLOGY/PRINCIPAL FINDINGS:This study tested the hypothesis that mitochondrial uncoupling requires the cell to compensate for the decreased oxidation phosphorylation efficiency by up-regulating lactate production, thus redirecting carbon flux away from TG synthesis. Metabolic flux analysis was used to characterize the effects of non-lethal, long-term mitochondrial uncoupling (up to 18 days) on the pathways of intermediary metabolism in differentiating 3T3-L1 adipocytes. Uncoupling was induced by forced expression of UCP1 and chemical (FCCP) treatment. Chemical uncoupling significantly decreased TG content by ca. 35%. A reduction in the ATP level suggested diminished oxidative phosphorylation efficiency in the uncoupled adipocytes. Flux analysis estimated significant up-regulation of glycolysis and down-regulation of fatty acid synthesis, with chemical uncoupling exerting quantitatively larger effects. CONCLUSIONS/SIGNIFICANCE:The results of this study support our hypothesis regarding uncoupling-induced redirection of carbon flux into glycolysis and lactate production, and suggest mitochondrial proton translocation as a potential target for controlling adipocyte lipid metabolism
    • …
    corecore