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Abstract 14 

This paper investigates the influence of jet traverse speed  on the surface integrity of 0.66 wt% 15 

Al2O3 nanoparticle reinforced metal matrix composite (MMC) generated by Abrasive Water Jet 16 

Machining(AWJM). Surface morphology, surface topography and surface roughness (SR) of the 17 

AWJ surface was analyzed.  The machined surfaces of the nanocomposites were examined by 18 

laser confocal microscope and field emission scanning electron microscope (FESEM). 19 

Microhardness and elasticity modulus measurement by nanoindentation testing were also 20 

performed across thickness of the samples to see depth of the zone, affected by AWJ cutting.  21 

The result reveals that extent of grooving by abrasive particle and irregularity in AWJ machined 22 

surface increases as the traverse speed increased. Similarly, the rise in value of surface roughness 23 

parameters with traverse speed was also seen. In addition, nanoindentation testing represents the 24 

lower hardness and elastic modulus due to softening occurs in AWJ surface. 25 

Keywords: Mg-based, nanocomposite, Machinability, AWJM, Surface, topography, roughness, 26 
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INTRODUCTION 28 

Currently, Magnesium based metal matrix composites (Mg-MMCs) are becoming prominent for 29 

numerous industrial applications owing to their good electrical and thermal conductivities, 30 

superior specific strength and stiffness, lower density, enhanced mechanical and tribology 31 
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properties, superior machinability, excellent castability etc. compared to their monolithic 1 

materials [1-4]. However, main drawback of Mg based MMC is deterioration in the ductility of 2 

the material with high volume fraction of particles. Whereas, Magnesium based metal matrix 3 

nanocomposites (Mg-MMNCs) retain good ductility along with improved yield and ultimate 4 

strength [5, 6]. Therefore, researchers are giving their attention to these materials. Literature 5 

shows these materials can be processed successfully by several methods such as, stir-casting 6 

method [7] followed by equal channel angular extrusion, disintegrated melt deposition (DMD) 7 

method followed by hot extrusion [8-9], semi solid stirring assisted ultrasonic vibration [10], 8 

powder metallurgy [11], friction stir process (FSP) [12] etc. The usage of Mg based composites 9 

is increasing constantly as it can solve problems faced by automobile, aviation and 10 

telecommunication industries where the ratio between strength and weight is an important factor. 11 

The poor machinability of these materials, limit its use in industries. In addition, the difficulties 12 

in traditional machining of MMCs lie in the desired tolerances and surface properties because 13 

hard ceramic reinforcements cause serious abrasion of the tool that result into unacceptable short 14 

tool life and this directly affect the manufacturing cost [13-14]. On the other side, the non-15 

traditional machining technique like abrasive water jet machining provides better properties of 16 

machining compared to other traditional machining methods [15]. AWJ technology can machine 17 

almost all types of material and is best suited for hard to cut materials and thermally sensitive 18 

materials [16]. The material removal process in AWJM occurs by means of erosion. The erosion 19 

is caused by grit abrasives entrained in high velocity water jet. The material removal process 20 

comprised with microchip formation, abrasive scooping, ploughing and rubbing, all of which 21 

occurs by means of shear deformation [17]. This machining process provides various distinct 22 

advantages like high machining versatility, small cutting forces, omni-directional cutting 23 

capability, high cutting speeds and no thermal deformation [15, 18-19].  24 

The abrasive water jet machining is an advanced technique,  that was successful used for 25 

processing wide range of materials such as AA5083-H32 aluminium alloy [20], brass-360 [21], 26 

nickel based superalloy [22], Stainless Steel AISI 304 [23] etc. However, Very few literatures are 27 

available on AWJM of MMCs materials. Muller and Monaghan [15] reported the machining 28 

characteristics of Al/SiC particulate reinforced composites using AWJM, Laser and Electric 29 

Discharge Machining (EDM). They reported that the AWJM process does not induce high 30 
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temperatures as compared to other thermal machining processes (laser, EDM). Hence, there is no 1 

thermal damage on the machined surface and there is only minimum sub-surface damage on the 2 

composite. However, the surface generated through AWJM, generally possesses poor surface 3 

finish and smoother surface is attributable to lower feed rates. This is the main limitations of this 4 

machining process. Srinivas et al. [24] have conducted a study to estimate the penetrability of 5 

abrasive water jets on aluminium alloy/SiC composite material and concluded that, harder 6 

materials offer higher resistance to the jet due to their increased mechanical properties. At an 7 

increased flow rate of abrasive and higher water jet pressure, the depth of penetration also 8 

increases. This happens because the jet possesses the maximum energy during higher water 9 

pressure and with greater numbers of particles gets a chance to erode the target material with 10 

high flow rate of abrasives. Kumar and Kumaresan [25] investigated the machinability of Al-11 

based SiC composite using AWJM, fabricated by stir casting method. They analyzed the effect 12 

of SiC reinforcement particle on machining process. They also examined and compared the 13 

influence of pressure of water jet, nozzle traverse speed and standoff distance on SR of the 14 

composite material with different compositions. They used Taguchi’s design of experiments to 15 

observe the recommended parametric condition for optimum SR. The main findings are the 16 

Traverse Speed is one of the significant factors on SR whereas water jet pressure and stand-off 17 

distance are least significant. Pramanik [26] presented an extensive review on non-traditional 18 

machining of MMCs materials. He analyzed the machining mechanism, cutting speed and 19 

surface finish during AWJM of MMCs. From this study he concluded that the mechanism of 20 

AWJM is dependent on the proportional size of the reinforcement and abrasive particles. The 21 

cutting wear is dominant feature during AWJM. The fracture and pull out of reinforcement 22 

particle may occur, when the abrasive particles are bigger than the reinforced particle and the 23 

surface finish is affected highly by abrasive rather than reinforced particle. In the case of 24 

comparable sizes between abrasive and reinforcement particles, indentation, ploughing and 25 

pushing of particles into the matrix generally occurs. Kok et al. [27] have proposed the Genetic 26 

Expressions Programming for predicting the SR as a function of characteristics of work piece 27 

material viz. particle size, weight fraction of particle and depth of cut in AWJM of 7075 28 

Al/Al2O3 composites. Hashish [19] presented the discussion on AWJ machining (turning, 29 

drilling, milling, linear cutting) of advance composites. Hamatani and Ramulu [28] presented a 30 

study on piercing and slot cutting of particle reinforced ceramic (TiB2/SiC) and metal (SiC/Al) 31 
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matrix composites through AWJM. They examined the surface roughness (Ra) with respect to 1 

speeds. The influence of abrasive mesh size and flow rate of abrasive on Ra values was also 2 

noted in MMC. It was seen that the Ra increases with traverse rate and decreases with bigger size 3 

of abrasive. The good surface finish was observed with lower traverse rate and  lower mass flow 4 

rate of abrasive setting whereas surface finish become worsen at higher setting of traverse rate 5 

and  higher flow rate of abrasive. The surface softening was also occurred during machining at 6 

higher traverse speed and smaller size of abrasive. The explanation was not given. Savrun and 7 

Taya [29] focused on machinability of SiC whisker/2124 aluminium matrix composite with an 8 

AWJ. They discussed the surface finish with respect to traverse speed. They observed that SR 9 

increases with traverse speed. Embedment of abrasive particle into matrix and micromelting of 10 

matrix material at higher traverse speed was also noticed. Work-hardening was not observed in 11 

machined composite. Best of the author knowledge the literatures are not reported so far on the 12 

machining characteristics of Mg-based nanocomposite during AWJM. 13 

The objective of this proposed work is to investigate the effectiveness of non-conventional 14 

machining process viz. AWJM during machining 0.66 weight fraction Mg-MMNC. The 15 

machining outcomes on these nanocomposites are discussed in terms of surface topography as a 16 

function of traverse speed. Surface integrity after machining is also examined by nano-17 

indentation testing. According to the results observed during the experiments, some concluding 18 

remarks regarding feasibility of machining method are also given. 19 

MATERIALS AND METHODS 20 

In this study, 6% Al (purity 99.9%) balanced by Mg (purity 99.9%) provided by Alfa Aesar 21 

(Massachusetts, USA) was used as matrix material. The Al2O3 nanoparticles (average particle 22 

size ~50 nm) were used as reinforcement supplied by Baikowski (Japan). The weight fraction of 23 

reinforcement particles added into the matrix material was 0.66. The material was fabricated by 24 

DMD method followed by hot extrusion [5]. 25 

Abrasive water jet machining 26 

The AWJM process was performed on PTV: CNC WJ2020B-1Z-D machine. The cutting was 27 

performed in three different levels (i.e., low, medium and high) of cutting speeds, vt = 20, 250, 28 

500 mm/min. The machining parameters were selected based on the pilot experiment. The 29 
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cutting conditions during experiments are displayed in Table 1.  A detail sketch of cutting head 1 

of AWJ machine is shown in Fig. 1 and Fig. 2 illustrates the experimental photo of cutting 2 

process. After machining, the morphology of the machined surfaces was investigated using 3 

Olympus LEXT OLS 3100 laser confocal microscope. The surfaces were further studied by Field 4 

emission scanning electron microscope (FESEM) to observe the machined surface at a higher 5 

resolution.  6 

Optical profilometer MicroProf FRT 7 

The machined samples to be examined were obtained after performing AWJM as per the setting 8 

parameters. In present study, three different processed surfaces machined at traverse speeds of 9 

20, 250 and 500 mm/min were studied.  Selected amplitude parameters were analyzed by optical 10 

profilometer. In this study, average roughness (Ra), maximum height of peak (Rp), root mean 11 

square roughness (Rq), maximum depth of valleys (Rv), ten-point height (Rz) of all machined 12 

surfaces were examined. All parameters were measured by MicroProf FRT according to EN ISO 13 

4287, then findings were analysed by SPIP software. 14 

Nanoindentation testing 15 

The nanoindentation test was performed on samples of Mg-6Al/0.66% Al2O3 material after 16 

machining to determine the elastic modulus and hardness of the materials. Testing was done on 17 

the Agilent G200 Nanoindenter and Berkovich indenter tip was used. For testing, the samples 18 

were cut in half, as sketched in Fig. 3. The cross-section was polished to mirror finish and test 19 

was performed. Three rows of 10 indents were made at the same distance, with step of 5 μm 20 

(Fig. 3). For testing single loading-unloading mode was used. The maximum load for each indent 21 

was 100 mN (with final depth of penetration typically about 2000 nm), then values of Hardness 22 

and elasticity modulus were measured and averaged. 23 

Mechanical properties 24 

The fabricated nanocomposites were characterized to know the mechanical properties. The 25 

density measurements were done on randomly selected polished samples by Archimedes’ 26 

principle. The distilled water used as immersion fluid. The nano-indentation testing was 27 

conducted on mirror-polished samples using XP-Nanoindenter (Agilent, USA) in continuous 28 



6 
 

stiffness mode (CSM) for measuring hardness and modulus. A Berkovich indenter having 1 

effective cone angle 70.3o is used for testing. The strain rate was fixed at 0.05s-1 during 2 

experiments and final depth of penetration fixed at typically about 2000 nm. Up to 5 indentations 3 

were made and the obtained data were statistically evaluated. The mechanical and physical 4 

properties of material are listed in Table 2. Nanoindentation experiment was also performed in 5 

unreinforced Mg material for comparing the hardness and modulus values. 6 

RESULTS AND DISCUSSION 7 

The outcomes of this research work includes the observation and analysis of surface 8 

morphology, surface roughness and nano-indentation testing (Measurement of hardness and 9 

elasticity) of the machined surfaces.  10 

Surface morphology 11 

The typical as machined surface (2D surface detail) is shown in Fig. 4 obtained by Olympus 12 

LEXT OLS 3100 laser confocal microscope.  Machined surfaces are composed of pronounced 13 

micro-cutting traces created by abrasive particles. The traces are oriented towards the direction 14 

of water jet flow. The lengths of traces are approximately same and are almost parallel. Some of 15 

the traces are slightly curved. Long narrow and short wide traces are also dispersed among the 16 

major traces. At slow speed, sometimes the traces are interrupted by short narrow grooves 17 

oriented perpendicular or obliquely to the traces. Additionally, the traces often overlap each 18 

other due to interaction between abrasive particles which is responsible for good surface finish at 19 

slow traverse speed. At higher speed the cutting traces become more pronounced and widens. 20 

There are also small oval depressions sparsely dispersed on the machined surface at higher 21 

speed. There are no visible plastic deformations on the surface. The corresponding 3D surface 22 

texture of the machined surfaces at different traverse speeds were analysed by Olympus LEXT 23 

OLS 3100 laser confocal microscope, shown in Fig. 5. 24 

For better resolution, machined surfaces were examined by FESEM (Fig. 6). The cutting wear is 25 

the major cause in material removal process and ductile shearing of matrix material by abrasive 26 

scooping and ploughing path is also observed. From FESEM photograph, it is clear that extent of 27 

grooving and severity of the surface features also increases with traverse speed in the machined 28 

surfaces. This result is similar with earlier studies [29]. From the Fig. 6, it is evident that the 29 
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surface morphology is almost regular at traverse speed of 20 mm/min and 250 mm/min. But at 1 

higher traverse speed (500 mm/min) the surface got more damaged by abrasive particles resulted 2 

into irregular or bigger grooves. It is natural that at lower traverse speed, the machined surface 3 

gets more time to be abraded, therefore the more material is removed progressively and the 4 

machined surface becomes smoother having less striation. The size of the abrasives is reasonably 5 

large (0.177mm for mesh size 80) compare to the reinforced particles. Therefore, several 6 

reinforcement particles removed by a single abrasive particle. The fracture and pull out of 7 

reinforced particles may happen [15] when those are partially in the path of abrasive particles 8 

and partially in the matrix material. In that situation the effect of reinforcement particles is 9 

negligible as compare to the effect of abrasive particle on the surface finish of the material [19]. 10 

Surfaces were further analyzed in terms of amplitude roughness parameters in next section. 11 

The machined surface is full of grooves, this may be due to sliding of particles and embedded 12 

abrasive particles into the matrix. The higher magnification FESEM photograph of grooves 13 

captures the embedded abrasive particles into the metal matrix shown in Fig. 7. The embedded 14 

particle in machined surface is garnet particle that was corroborated by Energy Dispersive 15 

Spectroscopy (EDS) analysis. In Fig. 7 the Fe/Mn peaks can be clearly seen, that denoting the 16 

garnet composition.  17 

The impingement of abrasive particles on the workpiece surface generates localized high 18 

temperature which may melt the matrix materials. In case of lower traverse speed, the cooling 19 

effect of the fluid minimizes the micro-melting but at higher traverse speed the micro-melting is 20 

noticeable. Fig. 8 represents the micro-melting on the AWJ surface machined at 500 mm/min 21 

speed. In this case, the surface appearance changes completely. 22 

Surface Roughness 23 

The roughness measurement of machined surface is performed on optical profilometer. The 24 

amplitude parameters (Ra, Rp, Rq, Rv, Rz) are used to measure vertical characteristics of the 25 

surface deviations. The 3D plot of surface topography is acquired from 10 numbers of lines 26 

spaced by 0.5 mm.  Fig. 9 (a-e) demonstrates the influence of traverse speeds on SR values at 27 

constant mass flow rate of abrasive. It is noticed that with the increase of traverse speed, surface 28 

roughness increases. This happens due to at higher traverse speed lesser number of abrasive 29 
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particles impinges on cutting surface due to smaller interaction time between abrasive jet and 1 

work-piece. Whereas, at lower speeds more number of abrasive particles impinges on cutting 2 

surface due to more interaction time between abrasive jet and work-piece and therefore, better 3 

surface finish is observed. This result can be correlated with the earlier surface topography (Fig. 4 

6). 5 

Variation in average surface roughness (Ra) in all three surfaces is shown in Fig. 9(a). The 6 

surface roughness (Ra) values obtained at traverse speed 20 mm/min, 250 mm/min and 500 7 

mm/min are 3.5 µm, 5.5 µm and 12 µm, respectively. An alteration of about 0.4 µm is noted in 8 

the minimum and maximum value of Ra in all surfaces. There is no notable changes was 9 

observed in Ra value within the assessment length. It represents regular surfaces produced by 10 

AWJM. The difference between Ra value at 20 and 500 mm/min speed is around 8-9µm. Hence, 11 

at 20 mm/min speed best surface roughness can be achieved. The main cause for minimum Ra at 12 

20 mm/min as compared to Ra at 500 mm/min is the fact that cutting grooves produced by each 13 

and every abrasive particle are regular and smaller in size in former case. 14 

Fig. 9(b) shows the root mean square roughness (Rq) with respect to all three traverse speeds. A 15 

similar trend was observed in Rq and Ra. The minimum Rq value is attained with 20 mm/min 16 

speed, maximum value with 500 mm/min and mid value with 250 mm/min speed. There is a 17 

large difference in Rq values at maximum and minimum speed i.e 12-13 µm. Fluctuations in Rq 18 

values at 20, 250 and 500 mm/min speeds are 0.2, 0.4 and 1.6 µm respectively. Hence, no 19 

appreciable changes were noticed in profile for Rq. A similar trend was also noticed in the ten-20 

point height (Rz) parameter as shown in Fig. 9 (c). Variation in maximum and minimum Rz 21 

value for all three surfaces are around 3.8-4 µm. Therefore, no appreciable fluctuation in profile 22 

was noticed. Fig. 9(d) and 9(e) shows maximum height of peak (Rp) and maximum depth of 23 

valley (Rv) parameters respectively. Figures are showing almost similar trend. In case of Rv 24 

values are very close for the surfaces machined at 20 and 250 mm/min speed. However, 25 

corresponding values of Rv are higher as compare to Rp values in abrasive water jet cut surface 26 

for all three different traverse speeds. Fig. 10 shows the 2D and 3D visualization of AWJ surface 27 

machined at 500 mm/min captured by MicroProf FRT. 28 

Additionally, this was also observed that the surface roughness of the nanocomposites is mainly 29 

affected by micro effects of each impacting particles. Since, reinforcing particles (50 nm) in this 30 
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composite are much smaller than the abrasive particle (0.177 mm) that impacting the matrix 1 

material. So, the nanoparticles will have little or no effects on machined surface finish. 2 

Nanoindentation testing 3 

To see the effect of AWJ machining in the nanocomposite, nano-indentation test was performed 4 

for micro-hardness and elasticity modulus measurements. The measurements were conducted up-5 

to 50µm depth from the machined surface across the thickness. The results of the hardness and 6 

modulus test are shown in Fig. 11. From graph it seems to be around 20-25 μm deep affected 7 

zones under surfaces. This may be attributed to softening of material during AWJ machining. 8 

The softening of the material during AWJ machining was also observed by other researchers 9 

[19]. The hardness and modulus values in up to 25 μm depth ranges from 0.8-1.0 GPa and 42-45 10 

GPa respectively. These values are resembles to the hardness and modulus values of 11 

unreinforced material (Table. 1). Up to the depth of 25 μm both the values are inconsistent, after 12 

25 µm depth values are consistent. The possible reason for this is may be resulted from the pull 13 

out of reinforcement particles during machining, since the reinforcement particle size is much 14 

smaller than abrasive particles [26]. Hence, it is showing almost similar values as pure one after 15 

machining.  16 

The surface machined by AWJ got lower hardness and elastic modulus though the variation of 17 

these parameters is significant in the same machined layers. The progressive abrasion of the 18 

machined surface releases the residual stress in the surface which relaxes the materials and, 19 

hardness and elastic modulus reduce. In addition localized grooving and striation allow the 20 

material to deform easily during hardness test which give lower hardness and elastic modulus. 21 

The higher readings of hardness on the machined surface arise due the testing of hardness on the 22 

embedded hard abrasive or reinforced particles.  23 

 24 

CONCLUSIONS 25 

In this study, the machinability aspects of Mg-6Al alloy matrix reinforced with 0.66 wt.% Al2O3 26 

nanoparticles was carried out during AWJM. The experimental results were analyzed and 27 
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compared under varying traverse speeds. Based on the investigation on feasibility of machining 1 

of nanocomposite, following conclusions can be drawn: 2 

1. AWJ machining seems to be promising machining method for 0.66 wt% Al2O3 3 

nanoparticle reinforced Mg based MMC with good surface finish and minimum sub-4 

surface damage. However, micro-melting at high traverse speed and abrasive particle 5 

embedment into the metal matrix was observed. 6 

2. The AWJ cut surface ensures the uniform surface topography at 20 mm/min and 250 7 

mm/min speeds. Whereas, at 500 mm/min speed the surface finish deteriorates due to 8 

insufficient cutting by abrasive particles at higher speed. 9 

3. According to amplitude parameters (Ra, Rq, Rz, Rp, Rv) selected for analysis, it confirms 10 

that surface parameters values decrease as traverse speed decreases from 500 mm/min to 11 

20 mm/min. At some extant, it ascertain the better surface quality could be achieved at 12 

lower speed. 13 

4. In the AWJ machined surface, the decrease in hardness and elasticity modulus values was 14 

noticed up-to the depth of 20-25 µm from machined surface. It represents the softening of 15 

the material occurred during machining. 16 

 17 
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Figure No Figure Captions 

Fig. 1 Schematic sketch of cutting head with used parameters 

Fig. 2 Experimental setup of AWJ Cutting process 

Fig. 3 Sample preparation for nanoindentation testing on AWJ machined surface, (a) 

A sample, with illustration of prepared cross sections, (b) Samples cut in half, 

embedded in metallographic resin, (c) Placing of indents 

Fig. 4 The AWJ machined surfaces of Mg-6Al/0.66 Al2O3 nanocomposites at three 

different speeds. 

Fig. 5 3D surface detail of AWJ cutting surface at different traverse speeds. 

Fig. 6 FESEM photograph of AWJ machined surface at different traverse speeds, vt = (a) 

20, (b) 250, (c) 500 mm/min. The cutting direction is shown by white arrows. 

Fig. 7 Higher magnification of Fig. 6(b) indicating abrasive particle embedded into the 

nanocomposite, confirmed by EDS.  
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Fig. 8 Micro-melting of matrix material after AWJM at a traverse speed of 500 mm/min. 

Fig. 9 Effect of traverse speeds on the selected amplitude (a-e) surface roughness 

parameters at constant abrasive mass flow rate (300 g/min).  

Fig. 10 Surface topographic image (a) 2D view, (b) 3D view of AWJ surface cut at 500 

mm/min speed. 

Fig. 11 Hardness and modulus values as a function of distance of indentation (across 

thickness) from machined surface. 
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Fig.1 Schematic sketch of cutting head with used parameters 9 
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Fig.2 Experimental setup of AWJ Cutting process 1 
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Fig.3. Sample preparation for nanoindentation testing on AWJ machined surface, (a) A sample, 

with illustration of prepared cross sections, (b) Samples cut in half, embedded in metallographic 

resin, (c) Placing of indents 

Machined surface 

(b) (a) (c) 

50 μm 

Cross-section 

Sample 
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20 mm/min 250 mm/min 500 mm/min 

Fig. 4. The AWJ machined surfaces of Mg-6Al/0.66 Al2O3 nanocomposites at three different 13 

speeds. 14 
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20 mm/min 250 mm/min 500 mm/min 

Fig. 5. 3D surface detail of AWJ cutting surface at different traverse speeds. 13 
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Fig. 6. FESEM photograph of AWJ machined surface at different traverse speeds, vt = (a) 20, (b) 3 

250, (c) 500 mm/min. The cutting direction is shown by white arrows. 4 
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Fig. 7. Higher magnification of Fig. 6(b) indicating abrasive particle embedded into the 2 

nanocomposite, confirmed by EDS.  3 
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Fig. 8. Micro-melting of matrix material after AWJM at a traverse speed of 500 mm/min. 9 
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Fig. 9.  Effect of traverse speeds on the selected amplitude (a-e) surface roughness parameters at 1 

constant abrasive mass flow rate (300 g/min).  2 

 3 

 4 

 5 

 

 

Fig. 10. Surface topographic image (a) 2D view, (b) 3D view of AWJ surface cut at 500 mm/min 6 

speed. 7 
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Fig. 11. Hardness and modulus values as a function of distance of indentation (across thickness) 1 

from machined surface. 2 

 3 

Table No. Table captions 

Table 1 Machining condition of AWJ cutting  

Table 2 Results of density, hardness and elastic modulus of Mg-6Al/0.66%Al2O3 

nanocomposites. 
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Table 1: Machining condition of AWJ cutting   13 

AWJ device for cutting by PTV: CNC WJ2020B-1Z-D 

Material :- Mg-6Al/0.66% Al2O3  

Parameters Symbols Unit Value 

Pressure of water p MPa 400 

Traverse speed vt mm/min Variable 20, 250, 500 

Thickness of sample h mm 8 

Abrasive mass flow rate ma g/min 300 

Abrasive size - mesh 80 
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Water nozzle diameter ⌀do mm 0.33 

Focusing tube diameter ⌀df mm 0.9 

Stand-off distance z mm 2 

Position of cutting head  ° 90 

Abrasives Used - - Australian garnet 

 1 
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 7 

 8 

 9 

 10 

 11 

Table 2: Results of density, hardness and elastic modulus of Mg-6Al/0.66%Al2O3 12 

nanocomposites. 13 

Material Density (g/cm3) Hardness (GPa) Elastic Modulus (GPa) 

Unreinforced Mg 1.739100 0.6-0.8 43-45 

Mg-6Al/0.66Al2O3 1.751204 0.8-1.2 47-51 
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