15 research outputs found

    Discovery and Characterization of the Laulimalide-Microtubule Binding Mode by Mass Shift Perturbation Mapping

    Get PDF
    SummaryConventional approaches to site mapping have so far failed to identify the laulimalide binding site on microtubules. Using mass shift perturbation analysis and data-directed docking, we demonstrate that laulimalide binds to the exterior of the microtubule on β-tubulin, in a region previously unknown to support ligand binding and well removed from the paclitaxel site. Shift maps for docetaxel and laulimalide are otherwise identical, indicating a common state of microtubule stability induced by occupancy of the distinct sites. The preferred binding mode highlights the penetration of the laulimalide side chain into a deep, narrow cavity through a unique conformation not strongly populated in solution, akin to a “striking cobra.” This mode supports the development of a pharmacophore model and reveals the importance of the C1–C15 axis in the macrocycle

    A Unique Mode of Microtubule Stabilization Induced by Peloruside A

    No full text
    Microtubules are a significant therapeutic target for the treatment of cancer, where suppression of microtubule dynamicity by drugs such as paclitaxel forms the basis of clinical efficacy. Peloruside A, a macrolide isolated from New Zealand marine sponge Mycale hentscheli, is a microtubule stabilizing agent that synergizes with taxoid drugs through a unique site, and is an attractive lead compound in the development of combination therapies. We report here unique allosteric properties of microtubule stabilization via peloruside A, and present a structural model of the peloruside binding site. Using a strategy involving comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) of different microtubule stabilizing agents, we suggest that taxoid-site ligands epothilone A and docetaxel stabilize microtubules primarily through improved longitudinal interactions centered on the interdimer interface, with no observable contributions from lateral interactions between protofilaments. The mode by which peloruside A achieves microtubule stabilization also involves the interdimer interface, but includes contributions from the α/β-tubulin intradimer interface and protofilament contacts, both in the form of destabilizations. Using data-directed molecular docking simulations, we propose that peloruside A binds within a pocket on the exterior of β-tubulin at a previously unknown ligand site, rather than on α-tubulin as suggested in earlier studies.YesAlberta Cancer Board, the Alberta Heritage Foundation for Medical Research, the Canadian Institutes of Health Research and intramural funds from the National Institute of Child Health and Human Development, NIH, USA

    A Computational Model for Overcoming Drug Resistance Using Selective Dual-Inhibitors for Aurora Kinase A and Its T217D Variant

    No full text
    The human Aurora kinase-A (AK-A) is an essential mitotic regulator that is frequently overexpressed in several cancers. The recent development of several novel AK-A inhibitors has been driven by the well-established association of this target with cancer development and progression. However, resistance and cross-reactivity with similar kinases demands an improvement in our understanding of key molecular interactions between the Aurora kinase-A substrate binding pocket and potential inhibitors. Here, we describe the implementation of state-of-the-art virtual screening techniques to discover a novel set of Aurora kinase-A ligands that are predicted to strongly bind not only to the wild type protein, but also to the T217D mutation that exhibits resistance to existing inhibitors. Furthermore, a subset of these computationally screened ligands was shown to be more selective toward the mutant variant over the wild type protein. The description of these selective subsets of ligands provides a unique pharmacological tool for the design of new drug regimens aimed at overcoming both kinase cross-reactivity and drug resistance associated with the Aurora kinase-A T217D mutation

    Conformational Analysis of the Carboxy-Terminal Tails of Human β-Tubulin Isotypes

    Get PDF
    Several isotypes of the structural protein tubulin have been characterized. Their expression offers a plausible explanation for differences regarding microtubule function. Although sequence variation between tubulin isotypes occurs throughout the entire protein, it is the extreme carboxy-terminal tails (CTTs) that exhibit the greatest concentration of differences. In humans, the CTTs range in length from 9 to 25 residues and because of a considerable number of glutamic acid residues, contain over 1/3 of tubulin's total electrostatic charge. The CTTs are believed to be highly disordered and their precise function has yet to be determined. However, their absence has been shown to result in altered microtubule stability and a reduction in the interaction with several microtubule-associated proteins (MAPs). To characterize the role that CTTs play in microtubule function, we examined the global conformational differences within a set of nine human β-tubulin isotypes using replica exchange molecular dynamics simulations. Through the analysis of the resulting configuration ensembles, we quantified differences such as the CTTs sequence influence on overall flexibility and average secondary structure. Although only minor variations between each CTT were observed, we suggest that these differences may be significant enough to affect interactions with MAPs, thereby influencing important properties such as microtubule assembly and stability

    Microtubule Assembly of Isotypically Purified Tubulin and Its Mixtures

    Get PDF
    Numerous isotypes of the structural protein tubulin have now been characterized in various organisms and their expression offers a plausible explanation for observed differences affecting microtubule function in vivo. While this is an attractive hypothesis, there are only a handful of studies demonstrating a direct influence of tubulin isotype composition on the dynamic properties of microtubules. Here, we present the results of experimental assays on the assembly of microtubules from bovine brain tubulin using purified isotypes at various controlled relative concentrations. A novel data analysis is developed using recursive maps which are shown to be related to the master equation formalism. We have found striking similarities between the three isotypes of bovine tubulin studied in regard to their dynamic instability properties, except for subtle differences in their catastrophe frequencies. When mixtures of tubulin isotypes are analyzed, their nonlinear concentration dependence is modeled and interpreted in terms of lower affinities of tubulin dimers belonging to the same isotype than those that represent different isotypes indicating hitherto unsuspected influences of tubulin dimers on each other within a microtubule. Finally, we investigate the fluctuations in microtubule assembly and disassembly rates and conclude that the inherent rate variability may signify differences in the guanosine-5′-triphosphate composition of the growing and shortening microtubule tips. It is the main objective of this article to develop a quantitative model of tubulin polymerization for individual isotypes and their mixtures. The possible biological significance of the observed differences is addressed
    corecore