A Computational Model for Overcoming Drug Resistance Using Selective Dual-Inhibitors for Aurora Kinase A and Its T217D Variant

Abstract

The human Aurora kinase-A (AK-A) is an essential mitotic regulator that is frequently overexpressed in several cancers. The recent development of several novel AK-A inhibitors has been driven by the well-established association of this target with cancer development and progression. However, resistance and cross-reactivity with similar kinases demands an improvement in our understanding of key molecular interactions between the Aurora kinase-A substrate binding pocket and potential inhibitors. Here, we describe the implementation of state-of-the-art virtual screening techniques to discover a novel set of Aurora kinase-A ligands that are predicted to strongly bind not only to the wild type protein, but also to the T217D mutation that exhibits resistance to existing inhibitors. Furthermore, a subset of these computationally screened ligands was shown to be more selective toward the mutant variant over the wild type protein. The description of these selective subsets of ligands provides a unique pharmacological tool for the design of new drug regimens aimed at overcoming both kinase cross-reactivity and drug resistance associated with the Aurora kinase-A T217D mutation

    Similar works

    Full text

    thumbnail-image

    Available Versions