96 research outputs found

    <em>Enterococcus faecalis</em> Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells

    Get PDF
    Background: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. Methods: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Results: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Conclusions: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-kappa B inflammatory response as well as impaired DNA damage response and cell cycle control gene expression

    Identification of surface proteins in Enterococcus faecalis V583

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design.</p> <p>Results</p> <p>Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in <it>Enterococcus faecalis </it>V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31) or to be secreted (5). Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species.</p> <p>Conclusions</p> <p>The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium <it>E. faecalis</it>. The 36 identified secreted (5) and surface (31) proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between <it>E. faecalis </it>and its environment.</p

    Enterococcal colonization of infants in a neonatal intensive care unit: associated predictors, risk factors and seasonal patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During and shortly after birth, newborn infants are colonized with enterococci. This study analyzes predictors for early enterococcal colonization of infants in a neonatal intensive care unit and describes risk factors associated with multidrugresistant enterococci colonization and its seasonal patterns.</p> <p>Methods</p> <p>Over a 12-month period, we performed a prospective epidemiological study in 274 infants admitted to a neonatal intensive care unit. On the first day of life, we compared infants with enterococcal isolates detected in meconium or body cultures to those without. We then tested the association of enterococcal colonization with peripartal predictors/risk factors by using bivariate and multivariate statistical methods.</p> <p>Results</p> <p>Twenty-three percent of the infants were colonized with enterococci. The three most common enterococcal species were <it>E. faecium </it>(48% of isolates), <it>E. casseliflavus </it>(25%) and <it>E. faecalis </it>(13%). Fifty-seven percent of the enterococci found were resistant to three of five antibiotic classes, but no vancomycin-resistant isolates were observed. During winter/spring months, the number of enterococci and multidrug-resistant enterococci were higher than in summer/fall months (p = 0.002 and p < 0.0001, respectively). With respect to enterococcal colonization on the first day of life, predictors were prematurity (p = 0.043) and low birth weight (p = 0.011). With respect to colonization with multidrug-resistant enterococci, risk factors were prematurity (p = 0.0006), low birth weight (p < 0.0001) and prepartal antibiotic treatment (p = 0.019). Using logistic regression, we determined that gestational age was the only parameter significantly correlated with multidrug-resistant enterococci colonization. No infection with enterococci or multidrugresistant enterococci in the infants was detected. The outcome of infants with and without enterococcal colonization was the same with respect to death, necrotizing enterocolitis, intracerebral hemorrhage and bronchopulmonary dysplasia.</p> <p>Conclusion</p> <p>In neonatal intensive care units, an infant's susceptibility to early colonization with enterococci in general, and his or her risk for colonization with multidrug-resistant enterococci in particular, is increased in preterm newborns, especially during the winter/spring months. The prepartal use of antibiotics with no known activity against enterococci appears to increase the risk for colonization with multidrug-resistant enterococci.</p

    “One-Size-Fits-All”? Optimizing Treatment Duration for Bacterial Infections

    Get PDF
    Historically, antibiotic treatment guidelines have aimed to maximize treatment efficacy and minimize toxicity, but have not considered the evolution of antibiotic resistance. Optimizing the duration and dosing of treatment to minimize the duration of symptomatic infection and selection pressure for resistance simultaneously has the potential to extend the useful therapeutic life of these valuable life-saving drugs without compromising the interests of individual patients

    Rapid evolution of microbe-mediated protection against pathogens in a worm host.

    Get PDF
    Microbes can defend their host against virulent infections, but direct evidence for the adaptive origin of microbe-mediated protection is lacking. Using experimental evolution of a novel, tripartite interaction, we demonstrate that mildly pathogenic bacteria (Enterococcus faecalis) living in worms (Caenorhabditis elegans) rapidly evolved to defend their animal hosts against infection by a more virulent pathogen (Staphylococcus aureus), crossing the parasitism-mutualism continuum. Host protection evolved in all six, independently selected populations in response to within-host bacterial interactions and without direct selection for host health. Microbe-mediated protection was also effective against a broad spectrum of pathogenic S. aureus isolates. Genomic analysis implied that the mechanistic basis for E. faecalis-mediated protection was through increased production of antimicrobial superoxide, which was confirmed by biochemical assays. Our results indicate that microbes living within a host may make the evolutionary transition to mutualism in response to pathogen attack, and that microbiome evolution warrants consideration as a driver of infection outcome

    Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer

    Get PDF
    Recent reports have suggested the involvement of gut microbiota in the progression of colorectal cancer (CRC). We utilized pyrosequencing based analysis of 16S rRNA genes to determine the overall structure of microbiota in patients with colorectal cancer and healthy controls; we investigated microbiota of the intestinal lumen, the cancerous tissue and matched noncancerous normal tissue. Moreover, we investigated the mucosa-adherent microbial composition using rectal swab samples because the structure of the tissue-adherent bacterial community is potentially altered following bowel cleansing. Our findings indicated that the microbial structure of the intestinal lumen and cancerous tissue differed significantly. Phylotypes that enhance energy harvest from diets or perform metabolic exchange with the host were more abundant in the lumen. There were more abundant Firmicutes and less abundant Bacteroidetes and Proteobacteria in lumen. The overall microbial structures of cancerous tissue and noncancerous tissue were similar; howerer the tumor microbiota exhibited lower diversity. The structures of the intestinal lumen microbiota and mucosa-adherent microbiota were different in CRC patients compared to matched microbiota in healthy individuals. Lactobacillales was enriched in cancerous tissue, whereas Faecalibacterium was reduced. In the mucosa-adherent microbiota, Bifidobacterium, Faecalibacterium, and Blautia were reduced in CRC patients, whereas Fusobacterium, Porphyromonas, Peptostreptococcus, and Mogibacterium were enriched. In the lumen, predominant phylotypes related to metabolic disorders or metabolic exchange with the host, Erysipelotrichaceae, Prevotellaceae, and Coriobacteriaceae were increased in cancer patients. Coupled with previous reports, these results suggest that the intestinal microbiota is associated with CRC risk and that intestinal lumen microflora potentially influence CRC risk via cometabolism or metabolic exchange with the host. However, mucosa-associated microbiota potentially affects CRC risk primarily through direct interaction with the host

    Two Coregulated Efflux Transporters Modulate Intracellular Heme and Protoporphyrin IX Availability in Streptococcus agalactiae

    Get PDF
    Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC pefD), where pef stands for ‘porphyrin-regulated efflux’. In vitro and in vivo data show that PefR, a MarR-superfamily protein, is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate intracellularly. The ΔpefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration, and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S. agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host

    Transitions at CpG Dinucleotides, Geographic Clustering of TP53 Mutations and Food Availability Patterns in Colorectal Cancer

    Get PDF
    Colorectal cancer is mainly attributed to diet, but the role exerted by foods remains unclear because involved factors are extremely complex. Geography substantially impacts on foods. Correlations between international variation in colorectal cancer-associated mutation patterns and food availabilities could highlight the influence of foods on colorectal mutagenesis. mutations from 12 countries/geographic areas. For food availabilities, we relied on data extracted from the Food Balance Sheets of the Food and Agriculture Organization of the United Nations. Dendrograms for mutation sites, mutation types and food patterns were constructed through Ward's hierarchical clustering algorithm and their stability was assessed evaluating silhouette values. Feature selection used entropy-based measures for similarity between clusterings, combined with principal component analysis by exhaustive and heuristic approaches. hotspots. Pearson's correlation scores, computed between the principal components of the datamatrices for mutation types, food availability and mutation sites, demonstrated statistically significant correlations between transitions at CpGs and both mutation sites and availabilities of meat, milk, sweeteners and animal fats, the energy-dense foods at the basis of “Western” diets. This is best explainable by differential exposure to nitrosative DNA damage due to foods that promote metabolic stress and chronic inflammation
    corecore