692 research outputs found

    Review of Privileged Documents in Trial and Deposition Preparation of Witnesses in New York: When, if Ever, Will the Privilege be Lost?

    Get PDF
    This article will examine New York’s refreshing recollection doctrine in the context of trial and deposition preparation of witnesses as to the consequences of the witness’s review of privileged writings. Initially, Part II will discuss Rule 612 of the Federal Rules of Evidence. The discussion will serve as the backdrop for the analysis of the above-mentioned issues under New York law. Part III will then examine the refreshing recollection doctrine as developed and applied to testifying witnesses at a trial or deposition by the New York courts. The examination will point out the doctrine’s key rules. Part IV discusses the treatment of these key rules by the New York courts in the witness preparation situation, both pre-trial and pre-deposition, showing the shortcomings of this judicial treatment and advocating for change. Lastly, Part V makes some suggestions to the attorney in light of current New York law as to avoidance in the preparation of witnesses before they testify at a trial or a deposition of the disclosure of otherwise privileged writings

    Cellular automaton decoders of topological quantum memories in the fault tolerant setting

    Get PDF
    Active error decoding and correction of topological quantum codes—in particular the toric code—remains one of the most viable routes to large scale quantum information processing. In contrast, passive error correction relies on the natural physical dynamics of a system to protect encoded quantum information. However, the search is ongoing for a completely satisfactory passive scheme applicable to locally interacting two-dimensional systems. Here, we investigate dynamical decoders that provide passive error correction by embedding the decoding process into local dynamics. We propose a specific discrete time cellular-automaton decoder in the fault tolerant setting and provide numerical evidence showing that the logical qubit has a survival time extended by several orders of magnitude over that of a bare unencoded qubit. We stress that (asynchronous) dynamical decoding gives rise to a Markovian dissipative process. We hence equate cellular-automaton decoding to a fully dissipative topological quantum memory, which removes errors continuously. In this sense, uncontrolled and unwanted local noise can be corrected for by a controlled local dissipative process. We analyze the required resources, commenting on additional polylogarithmic factors beyond those incurred by an ideal constant resource dynamical decoder

    Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems

    Get PDF
    The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False positives in the multi- planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false-positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~2 unidentified false-positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves and ground-based spectroscopy and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. None the less, our result nearly doubles the number of verified exoplanets.Comment: 138 pages, 8 Figures, 5 Tables. Accepted for publications in the Astrophysical Journa

    Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells

    Get PDF
    The factor VIII gene, which is defective In hemophilia A, is located in the last megabase of the long arm of the X chromosome. Inversions due to intrachromosomal homologous recombination between mispaired copies of gene A located within intron 22 of the gene and about 500 kb telomeric to it account for nearly half of all cases of severe hemophilia A. We hypothesized that pairing of Xq with its homolog inhibits the Inversion process, and that, therefore, the event originates predominantly in male germ cells. In all 20 informative cases In which the inversion originated in a maternal grandparent, DNA polymorphism analysis determined that it occurred in the male germline. In addition, all but one of 50 mothers of sporadic cases due to an Inversion were carriers. Thus, these data support the hypothesis and Indicate that factor VIII gene inversions leading to severe hemophilia A occur almost exclusively In male germ cell

    K2-19b and c are in a 3:2 Commensurability but out of Resonance: A Challenge to Planet Assembly by Convergent Migration

    Get PDF
    K2-19b and c were among the first planets discovered by NASA's K2 mission and together stand in stark contrast with the physical and orbital properties of the solar system planets. The planets are between the size of Uranus and Saturn at 7.0 ± 0.2 R⊕ and 4.1 ± 0.2 R⊕, respectively, and reside a mere 0.1% outside the nominal 3:2 mean-motion resonance. They represent a different outcome of the planet formation process than the solar system, as well as the vast majority of known exoplanets. We measured the physical and orbital properties of these planets using photometry from K2, Spitzer, and ground-based telescopes, along with radial velocities from Keck/HIRES. Through a joint photodynamical model, we found that the planets have moderate eccentricities of e ≈ 0.20 and well-aligned apsides Δϖ ≈ 0°. The planets occupy a strictly nonresonant configuration: the resonant angles circulate rather than librate. This defies the predictions of standard formation pathways that invoke convergent or divergent migration, both of which predict Δ ≈ 180° and eccentricities of a few percent or less. We measured masses of M_(p,b) = 32.4 ± 1.7 M⊕ and M_(p,c) = 10.8 ± 0.6 M⊕. Our measurements, with 5% fractional uncertainties, are among the most precise of any sub-Jovian exoplanet. Mass and size reflect a planet's core/envelope structure. Despite having a relatively massive core of M_(core) ≈ 15 M⊕, K2-19b is envelope-rich, with an envelope mass fraction of roughly 50%. This planet poses a challenge to standard models of core-nucleated accretion, which predict that cores ≳10 M⊕ will quickly accrete gas and trigger runaway accretion when the envelope mass exceeds that of the core
    • 

    corecore