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Abstract
Active error decoding and correction of topological quantum codes—in particular the toric code—
remains one of themost viable routes to large scale quantum information processing. In contrast,
passive error correction relies on the natural physical dynamics of a system to protect encoded
quantum information. However, the search is ongoing for a completely satisfactory passive scheme
applicable to locally interacting two-dimensional systems.Here, we investigate dynamical decoders
that provide passive error correction by embedding the decoding process into local dynamics.We
propose a specific discrete time cellular-automaton decoder in the fault tolerant setting and provide
numerical evidence showing that the logical qubit has a survival time extended by several orders of
magnitude over that of a bare unencoded qubit.We stress that (asynchronous) dynamical decoding
gives rise to aMarkovian dissipative process.We hence equate cellular-automaton decoding to a fully
dissipative topological quantummemory, which removes errors continuously. In this sense,
uncontrolled and unwanted local noise can be corrected for by a controlled local dissipative process.
We analyze the required resources, commenting on additional polylogarithmic factors beyond those
incurred by an ideal constant resource dynamical decoder.

1. Introduction

Quantumcoherence is capricious, and taming it requires sophisticatedmethods of control and significant
resource overhead. So far the best candidates are based onKitaev’s toric code [1, 2], and variants thereof.While
quantum information can be stored in ground states of a toricHamiltonian, thermal excitations are unconfined
in two or three-dimensions, allowing thermal diffusion and corrupting data in constant time [3–7]. Using active
decoding, this problem can be overcome. Errorsmust be regularlymonitored by collecting syndrome
information, which is analyzed by a decoding algorithm and corrected for. Thefirst steps towards experimental
implementations of error-correcting protocols are under way [8–11].

Given reliable snapshots of error syndromes, decoding algorithms can be independently applied to each time
slice [12]. Decoders exist using notions ofminimum-weight perfectmatching [13, 14], renormalization [15, 16],
and simulated annealing[17, 18], which is highly problematic for 2D architectures, where on chipwiring
becomes cumbersome beyond nine physical qubits. However, parallelized decoding is also possible with
cellular-automaton decoders that locally store syndrome information, communicating with only nearest
neighbors. Each node in the cellular automaton stores a limited amount of additional data, and our focus here is
on so-calledf-automata [19]where this data is a single variable, orf-value, per node.

Yet, perfect syndromemeasurement is a fantasy. It suffices for developing toy decoders, but ismerely the first
step to practical decoding. Conventionally, one tacklesmeasurement errors by recording a history of recent
syndrome snapshots, then running a decoder suitable for three-dimensional syndrome distributions [13, 14].
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In contrast, here we propose the concept of aMarkovian dynamical decoder, where each step of the decoder
only depends on the present configuration of (faulty) syndromesmeasurements and the auxiliaryf-field.
Specifically, we show that af-automaton decoder can toleratemeasurement noise without significant changes
to the algorithms, while preserving a number of desirable features.Measurement errors cause ripples in the
dynamics, butmay be naturally tolerated, provided fresh syndrome information is acquired before the ripple
travels too far. No explicit record of the syndrome history is required, rather past syndromesmerely leave echoes
in the state of the cellular automaton. To the best of our knowledge, there is only one prior study of aMarkovian
dynamical decoder; due toHarrington [20]. Interest in this early work has recently been revived [21], and
appears to be the right setting for certain types of non-Abelian anyon decoding [22, 23].

TheMarkovian dynamical decoder paradigm is naturally suited to various physical implementations where
syndromes can not easily bemeasured synchronously. In systemswhere entanglement is generated
probabilistically [24–27], including syndromemeasurements [28], this situation readily applies. Rather than a
well defined series of snapshots, the syndromes are refreshed asynchronously; meaning that every unit cell of the
cellular-automaton decoder is updatedwith a certain probability that is independent of the other cells. The
dynamical paradigm is equally plausible in other architectures with an inherentlymodular structure of
interacting nodes, as is notably the case in anticipatedmesoscopic implementations of the toric code [29, 30],
based onMajorana bound states supported by topological semi-conductor nanowires.

The locality,Markovianity and asynchronicity of such decodersmakes them conceptually equivalent to
certain physical systems undergoing open systemdynamics.We show that an asynchronous cellular-automaton
decoder can be considered as the discretization of aMarkovianmaster equationwhich dissipatively protects the
topological subspace of the code. This opens up the potential of engineering quantummemories from locally
interactingmatter systems, providing passive protection against noise. In this sense, one can think of passive
dissipative quantummemories protected against unwanted dissipation. Finally, from rudimentary numerical
exploration, dynamical cellular-automaton decoders seempromising in the presence of qubit loss or in the
presence of spatially and temporally correlated noise, though these settings are all beyond the scope of the
present article.

An asynchronous cellular automaton ismost naturally built from a synchronous one that does not require a
clock or time dependent rules. One such time homogeneous cellular automaton is provided by the 3Df-
automaton of [19]. In contrast, the 2D*f-automaton of [19] and an automaton studied byHarrington [20, 31]
both keep track of time, and so are less easily adapted to an asynchronous setting. For completeness, we later
review the synchronous operation of theHarrington decoder.We show that our dynamical 3Df-automaton
decoder provides such an asynchronous dynamical decoder.

2. The decoders

2.1.f-automaton decoders
Decoders in our context are processes that remove errors from a lattice configuration  and bring the system’s
state back to the code space. Herewe focus on the toric code that uses an L by L square lattice with periodic
boundary conditions. For simplicity, we assume uncorrelatedX andZPauli noise. This allows us to analyze only
PauliX errors, which aremeasured by plaquette operators, withZ noise decoding behaving identically and
independently. To restrict ourselves to algorithms that can be highly parallelized and are inherently local, we
formulate all algorithms as cellular automata (CA). For everymeasurable syndrome in the codewe also place a
cell for the automaton, constituting a parallel latticeΛwith one site per plaquette. The cell has local access to the
measured syndrome and can read information from the neighboring cells on theCA latticeΛ of side length L. If a
−1 syndrome ismeasured, wewill say that an anyon is present. The anyons can bemoved locally by applying (or
equivalently storing) local bit flip operations. The automaton possesses the same periodic boundary conditions
as the code does. Aswewill see, it is sometimes convenient to allow theCA latticeΛ to extend in the third-
dimension (see figure 1).

We specifically focus on and generalize a scheme for CAdecoding the 2D toric code, introduced in [19]. The
underlying idea is to simulate an attractive interaction between anyons from local update rules. The attraction is
mediated via a scalarfield f ( )x on the discrete lattice Î Lx . Sites occupied by anyons act as sources for the field.
Afield value is stored at each cell of the automaton, and the field builds up according to a local discretized version
of Poisson’s equation. As it turns out, the field has to be generated via aCAwhich extends into the third-
dimension so as to guarantee that the field falls off as r1 away fromanyons [19]. That way, nearby anyons are
attracted to each other under the influence of thefield, but do not feel the attraction of far away anyons very
strongly. Generating such afield locally in two-dimensions seems to be difficult, but it occurs naturally in 3D.
Wewill briefly review the so-called 3Df-automaton depicted infigure 1(a). Other passivememories have been
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proposedwhere an effective interaction emerges in the systemHamiltonian [32, 33], but here the interaction is
simulated by the dynamics of a CA rather than being amanifestly physical interaction.

The cellular automaton update rules dynamically evolve a combined quantum–classical system. For ease of
presentation, the field and anyon positions are embedded in quantum systemswithHilbert spaces  and  ,
respectively.We useσ to denote states within the composite space  Ä Ä , where is the toric code
Hilbert space. The update rules are composed of two elementary components: field updates F and anyon updates
A. Thefield update F simultaneously replaces thefield value at all sites by the average of all six neighboring field
values and adds+1when an anyon is present. The anyon updateAmoves anyons to the one of their four
neighboring sites in the toric code planewith the highest associatedf-value. Unwanted limit cycles are avoided
bymovingwith a probability of 1/2.

In order for two anyons to be attracted to each other, theymust ‘feel’ thefield from the other anyon. In other
words, the influence of an anyon on the fieldfneeds to have propagated to other anyons. To ensure a sufficient
convergence of thefield between anyon updates, it is required that F is applied ~c Llog2 times [19]. This yields
the compound update rule ≔D AFc

c. Applying the updateDc several times guarantees that typical clusters of
errors get collapsed back to an anyon free configuration.

2.2.Markovian dynamical decoders
Wenext introduce the notion of aMarkovian dynamical decoder, for themoment still in the synchronous setting.
A dynamical decoder is to be contrastedwith a regular decoder in that a regular decoderminimizes the number
of residual errors at each time slice. At a given instance in time, a dynamical decoder only chooses to remove
some of the error, according to a suitable prescription. AMarkovian dynamical decoder keeps nomemory of
previousmeasurement rounds. Dynamical decoders do not need to be local, as in [14], but wewill only consider
local ones in this work. In fact, dynamical decoding is expected to be particularly advantageous if constraints of
locality are to be respected.

Wewill now turn tomaking these notionsmore precise.We denote byEp the errormap that appliesX-flips
on each qubit of the toric codewith probability p. The imperfect error syndrome extraction is reflected by the
application of amapMq, where >q 0 denotes the probability that a syndrome is incorrect. For perfect
syndromemeasurement, q=0, decoding can be achievedwith only one round of syndrome extraction and a
suitable number τ of updatesDc,

s s=t
t( )( ) ( )D M E , 1c p0

whereσ is a state on the combined quantum–classical Hilbert space. The quantum component is the toric code
and the classical component represents both thef-field and the anyon locations reported bymeasurements. The
exponent τmust be chosen such that the decoder terminates. If the error rate p is below a certain critical
threshold, a logical error is returnedwith probability exponentially suppressed in L. However, for active error
correction only partial decoding is necessary between different rounds of syndromemeasurements. In
particular, onemay consider very short sequences inwhich only partial corrections are calculated before the
syndrome is remeasured. As every recovery step only depends on the instantaneous time syndrome information,
we refer to this concept asMarkovian dynamical decoding. Specifically, we define synchronous dynamical
decoding as the succession of themaps

s s=t
t( ) ( ) ( )D M E , 2c q p

where τ is the number of sequences. In the setting of dynamical decoding, we are interested in estimating the
survival time of the logical subspace; i.e. how long one typically has towait before a logicalX orZ error occurs on

Figure 1. (a) Layout of the decoder. Spheres represent toric code qubits and gray cells are interconnected elements of the cellular
automaton, extending into the third-dimension. (b) Snapshot of the asynchronous decoder on the toric code plane for a given
numerical run. Filled diamonds represent actual anyons, empty diamonds correspond faultymeasurement that incorrectly predict the
presence of an anyon. Both types of syndromes act asfield sources. The color scale represents thefield intensitywhich builds up
around anyons.
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the encoded qubits. In order to determine this survival timewe checkwhether a logical error has occurred by
decoding a copy of the state withoutmeasurement errors in every sequence.

It is important to note that between every round ofmeasurement, the dynamical decoder will leavemany
residual errors in the system. This is even the case when themeasurement error goes to zero. This is in stark
contrast with conventional decoders designed for perfectmeasurements, which try tominimize the residual
errors in the lattice between everymeasurement. A code is called single-shot error correcting, if the residual errors
can beminimized at each step in the presence ofmeasurement errors, while still guaranteeing a decoding
threshold [34, 35]. Dynamical decoders will not, in general, perform single-shot error correction but the
converse is true.

2.3.Decoding in continuous time
Equation (2) defines synchronousMarkovian dynamical decoding, where for thef-automaton decoder the field
updates F and the anyon updatesA are applied simultaneously on all sites at each time step. Amore physically
relevant schemewould be one that is naturally asynchronous.We consider the local operators fx and ax

performing field and anyon updates but only applied to a single site x, and the Xp v, -operator applying a Pauli
operator to the edge Îv with probability p. The mq x, -operator reflects ameasurement with error probability
q at Î Lx .We pick a site x (or edge v in the case of Xp v, ) at random, and apply the localmap to that site (or
edge). By considering non-zero q, we allow for noisymeasurements. Every site keeps a record of itsmost recent
measurement result, and thefield updates are calculated on the basis of thismost recent result. Therefore, field
updates are based on a record of anyon locations that is both noisy and not always up-to-date. Furthermore, the
probability to choose fx is weightedwith ~c Llog2 , sowe incur a polylogarthmic increase in the rate of field
updates relative to anyonic andmeasurement processes. To compare the performance of synchronous and
asynchronous dynamical decoders, we define one time step as the number of operations after which all anyons
on average had the chance tomove once.

3.Numerical results

3.1. Results from simulations
Wehave simulated the proposed synchronous and asynchronousMarkovian dynamical decoders for even
lattice sizes = ¼L 12, 14, , 24 byMonte Carlo sampling.We allowed formeasurement errors q=p and
considered a range of physical error probabilities. Figure 2(a) presents results for the synchronous dynamical
decoder, andfigure 2(b) presents the asynchronous case. Each data point reflects the average over 5000 samples.
For both decoders, we see clear evidence of survival times extended by several orders ofmagnitude across the
parameter range studied. Typically, one aims to numerically identify a threshold, belowwhich survival times are
exponentially prolongedwith increasing lattice size. Before discussing possible threshold values, we review the
standard techniques for identifying thresholds.

An establishedmethodology is to look for a common crossing between curves for the various lattice sizes.
Yet, in practice, evenwhen a threshold exists, the crossings drift to lower error rates with increasing lattice size.
At sufficiently large lattice sizes, this drift will become negligible and a common crossing is observed and taken as
firm evidence of a threshold. Amore sophisticated approach is tofit data to a scaling law [13, 20]

á ñ = + - + - +n n m-( ) ( ) ( ) ( )/ /T L p A B p p L C p p L DL, , 3fit
1

fit
2 2 1

where the term m-D L 1 accounts for finite lattice size effects. The variable pfit gives a threshold estimate andwill
be smaller than the lowest observed crossing, having extrapolated to account forfinite size effects.

Our numerical investigations show crossings in the range –0.22% 0.36% for the synchronous decoder and
for the –0.34% 0.52% asynchronous case. The lowest crossings at =p 0.22%cross (synchronous) and

=p 0.30%cross (asynchronous) correspond the crossing between the L=22 and L=24 curves and give
threshold upper bounds. Next, we select the data with p close to these lowest crossings. Specifically, for the
synchronous decoder we select data points with = { }p 0.18%, 0.223%, 0.2763% and for the asynchronous
case we select data points with = { }p 0.223%, 0.2763%, 0.3424% . Fitting this data to the above scaling law,
gives threshold estimates of =p 0.17%fit (synchronous) and =p 0.25%fit (asynchronous). As expected, these
pfit values lie below the corresponding lowest crossing pcross. However, they are sufficiently far below the lowest
crossing that we can not conclusively claim to have found a threshold at the value pfit.

We conclude thatfinite size effects are still prominent at L=24. The use of the scaling lawfitting is intended
to adjust for such effects, but can not be relied upon for large adjustments. Ideally, data at higher Lwould be
available, but we are already at the limits of available computational power.Other decoders have been able to
collect reliable data at higher L.While CA can be expected to run quickly on customhardware, our simulations
were executed on a conventional serial processor, leading to an ( )O L3 slow down in the runtime, which
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constrains the range of accessible L values. The need to sample at small probabilities and long survival times, also
leads to great computational overhead sincemore samples are required to obtain good statistics.

It is important to note thatf-field decoders suffer very significant finite size effects up to large system sizes.
Evidence of this is found in section 3.3wherewe investigate a related class of decoders that behave very similarly,
butwhich can reach higher L values on a conventional computer architecture. This opens the possibilities of
inferring higher Lperformance for ourCAdecoders by bootstrapping our numerical data onto data provided by
these related decoders. However, we again found that finite size effects were visibly clear upto L=50, and even
upto L=80 did not provide a scaling lawfit pfit that was comparable to the lowest observed crossings.

These difficulties seem to be generic forMarkovian dynamical decoders so far proposed. For instance, the
dynamical decoder identified byHarrington [20] is believed to have a threshold by virtue of an extension of the
work ofGács [36–38]. However, all numerical investigations [20, 31] to date have yet tofind a common crossing
over awide range of lattice sizes.

3.2.Measurement errors
Formany of the existing topological quantum codes, it is necessary to keep a log of the syndrome information
whenever there aremeasurement errors. Only codes allowing for single shot decoding [34, 35] can copewith
measurement errors in the setting of equation (1). One of themain benefits of both synchronous and
asynchronous dynamical decoders is thatmeasurement errors are naturally incorporatedwithout any additional
overhead. This feature is inherited from the local structure of the decoding algorithm: if the presence of an anyon
is falsely indicated, thismay only result in a single additional bit-flip error created by the local anyonmove. In the
next sequence this bitflip is likely incorporated into the syndrome and is not different fromusual errors. Also,
the imaginary anyonmay attract other anyons, which is not different from the case where a real error occurred.

3.3. Instantly updatedf-decoders
The simulation has to run throughout the full survival time, which grows very rapidly with increasing system size
and decreasing error rates. Therefore, the simulation of dynamical 3Df-automaton decoders on traditional
architecture is numerically expensive. Furthermore, we simulate the 3DCAwithin a serial centralized
computingmodel, which leads to an additional time cost scalingwith L3. Parallelization exploiting the cellular
nature of the decoderwould eliminate this cost, but has not yet been implemented. Accordingly, the simulation
is clearly limited in system size to low error rates.

Figure 2.Rapid increase in the average survival time of the dynamical 3Df-automaton decoderwithmeasurement errors (q = p) in
(a) synchronous and (b) asynchronous operation. Below are curve crossings as a function of p in (c) synchronous and (d) asynchronous
operation. A data point at lattice size L represents crossing between curves for lattice sizes -L 1 and +L 1. Also shown is pfit, the
scaling lawfit that attempts to compensate forfinite size effects.

5

New J. Phys. 19 (2017) 063012 MHerold et al



To obtain results for larger system sizes we replace thef-automaton by explicitly calculating steady-state
field values. The appropriate field for a 3Df-automaton is a superposition offields decaying as r1 , where r
represents theManhattan, or 1-norm, distance from the anyon position. The anyon-move rules are identical to
the synchronousCAdecoder. The dimensionality of af-automaton determines forwhich number of
dimensions the discretized Poisson equation is solved through the iterative algorithm. To construct af-
automaton decoderwith a time independent parameter c, it seems necessary to choose a three-dimensionalf-
automaton [19]. Figure 3(a) gives the results for a dynamical decoder that operates with explicitly calculated field
values ar1 for different choices of the parameterα.We find that the parameterα has a strong impact on the
survival time. An increase of survival timewith lattice size is only present for a 1. The iterative field
generation via aCA leads to incomplete convergence of the field leading tofields with slightly shorter range. To
incorporate this fact we opted to study an explicit field decaying as r1 1.05. For further details on the field profile
and convergence properties we refer to [19].

As expected, the explicit field r1 1.05 decoder and the 3DCAdecoder show similar behavior. Numerics up to
system size L=80 can be found infigure 3(b). Fitting equation (3)we obtain threshold values pfit from0.03 %
to 0.05 %withmeasurement errors q=p. The range is obtained by excluding different amounts of small system
size data and varying the used error ranges p. However, all our data and observed crossing are for 0.07% and
above. Since pfit is again extrapolated to below the regimewherewe have concrete data, we are again unable to
decisively conclude that pfit is an accurate threshold estimate. In otherwords, figure 3(b) tells us that if there is a
threshold, then itmust be below 0.07%. Since the crossings for larger lattice sizes happen at average survival
times of~108 time steps, we cannot directly probe the behavior below threshold, and cannot guarantee that
there is exponential increase in survival time as a function of system size below a critical p. Figure 3(b) is
consistent with other numerical studies ofMarkovian dynamical decoders in [20, 31].

4. Further conceptual characteristics ofMarkovian dynamical decoders

4.1.Decoding by open systems dynamics
The concept of dynamical decoders ismotivated by the theory of classical robustmemories. In this context, CA
are studied that redundantly store the information in their local state space. Appropriately tailored update rules
can correct local errors and can be used for active error correction. Such error correcting features appear in two
fundamental varieties. First, there exist automatawhich are called eroders orwashout automata. Considering a
binaryCA, the repeated action of an eroder leads to all cells having the value of the initial statesmajority
occupation. In this way, eroders are the equivalent of a non-dynamical decoder in the absence ofmeasurement
errors. Both systems return a partially erroneousmemory state to an error free state. It is suggestive to imagine
that in this setting the errors only act at the first time slice and afterwards the eroder can act unimpeded. The
second variety appears if we let errors appear at every single time slice. In this setting the following question is
asked: given the initial state is afixed point of the automaton, is this fixed point stable under local perturbations?
This setting corresponds to dynamical decodingwhere local update rules permanently counteract to the
corruption ofmemory.

Figure 3.Details of dynamical decoders simulatedwith explicitfieldswith ar1 profile andwithoutmeasurement errors. (a) Survival
time for different values ofαwith =p 0.6 %. (d)The r1 1.05-decoder shows survival time increasing as a function of system size, but
with crossings drifting to lower error rates.
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Under certain assumptions for dimensional binary CAToom’s theorem applies and being an eroder is
equivalent to the existence of stable fixed points. Themost prominent example of such aCA is theNorth–East-
Center (NEC) rule, also referred to as Toom’s rule. It updates each cell bymajority of the three (NEC) cells. For
an initial i.i.d. configurationwith probability p, the automaton calculates themajority if ¹p 1 2, i.e. the
automaton is an eroder. This corresponds to a decoderwith threshold =p 1 2th . Considering the symmetry of
the update rule and employing Toom’s theorem it follows that the automatonmust possess two robustfixed
points.However, it is implausible, that the system can tolerate an error rate close to 1/2 at every time step. This
intuition can bemade rigorous in the proof of phase coexistence. Consequently, the threshold for the fault
tolerance of attractive states has to be lower then 1/2. This lower thresholdwould correspond to the threshold of
a dynamical decoder.

Using these insights into classical CA,we formulate the following rules of thumb for dynamical decoders:
first, a dynamical decoder will usually alsowork as non-dynamical decoder. And second, the dynamical
threshold is lower than the non-dynamical threshold. To avoid confusion, it should be stated that survival time
simulations can also be performedwith non-dynamic decoders.Here, both the decodingwithoutmeasurement
errors and the decoding in 2+1 dimensions withmeasurement errors classify as non-dynamic. For such
experiments, the decoder threshold and the survival time threshold is identical.

4.2. Semigroup representation
An asynchronous cellular automaton can be understood as the evolution induced by a time independent
Markovianmaster equation. At a constant rate, the coherent evolution is interrupted by quantum jumps
corresponding to local unitary operations. Such a prescription precisely corresponds to a continuous one
parameter semigroup, here acting on both the quantum state, as well as the effectively classical record of the
anyon location and the classical auxiliaryfields. The dynamical equation is given by


s

s
¶
¶

= ( ) ( )
t

, 4

where  is the Liouvillian decomposed as

 å≔ ( )5
j

j

and each local term takes the form

 s g s s s= - -( ) ( ) ( )† † †L L L L L L2 2 . 6j j j j j j j j

The { }Lj are called Lindblad operators and g >{ }0j can be viewed as the rates of the dissipative processes.
Specifically, we construct a Liouvillianwhere the geometrically local jump operators Lj are constructed from
Xp v, , mq x, , fx , and ax, for all x and v, with correspondingweights g g g g{ }, , ,X m f a . The gf ratesmust now scale

as ~c Llog2 relative to all other rates to emulate the scaling of c. In otherwords, asynchronous dynamical
decoding can be understood as a dissipative process

   = + ( ), 7

where the dissipative decoder reflected by  continuously ‘corrects’ an uncontrollable noise operator 
describing the actual noise. In this sense, the promise of ‘fighting noise with noise’ ismostmanifestly realized:
Unwanted and equally uncontrollable noise processes are here corrected for by a controlled local dissipative
process.We hence naturally bridge the gap between decoding and dissipative self-correcting [39, 40]. The
Lindblad operators can be directly constructed from the local unitaries or stochasticmaps of the update rules as
follows: consider a continuous-time classical stochastic process inwhich the unitaryO is applied to a quantum
system at random times, uniformly distributed at a constant rate l > 0, such that the number of events in time
interval t+( ]t t, follows a Poisson distributionwith associated parameter lt . This classical stochastic process
is on average on the level of the quantum system reflected by a quantumMarkov process.

Similarly, the purely classical part can be embedded in a quantum system, the involved quantum states being
diagonal. In this picture, there is a quantummechanical equivalentTx of an update rule fx at a site x acting as

r r ( )†T T 8x x

on quantum states ρ. Again, if the rule fx is applied in a continuous asynchronous fashion at rate l > 0, this is
reflected by the quantumdynamical semi-group of the above formwith Lindblad operators =L Tx x. The
overall asychronous cellular automaton can be embedded in a tri-partite quantum systemwithHilbert space
  Ä Ä , with Lindblad operators { }Lj acting locally and at two tensor factors at the time. The actual
physical noise process is acting only on the first tensor factor associatedwith the physical quantumdegrees of
freedom. For a practical local dissipative decoder that does not have a threshold, see the interesting recent
proposal in [7].
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4.3. System size dependencies
Thef-automaton decoder is characterized by the simplicity of its update rules and is particularly amenable to a
representation as an asynchronous CA.However, there are somemild system size dependencies hidden in the
construction that need to be accounted for. Thefirst obvious one is the necessity to run the field updates for a
number of rounds of order L for every anyonmove. Translated to the dissipative setting, this corresponds to the
rates gf scaling as L. In physical terms, this reflects the necessity of the field update operations to be increasingly

fast with the size of the system. In practice, this is notmuch of an issue, as the field updates correspond to purely
classical processing.

Secondly, in the rule for anyon displacement, we need the field to have a resolution growingwith the system
size. If thefield is encoded digitally, this corresponds to a local dimension of theCA latticemoderately scaling as
log L. Finally, the anyon updates do not depend on themagnitude of the field, but rathermovewith unit
probability, whenever there is a non-zerofield gradient. This feature can also be adapted to the dissipative
picturewith a logarithmic overhead by digitally simulating a step function at the level of the jump operators.
Thus, the CAdecoder can naturally be represented as a local dissipative process, at the cost ofmerely
logarithmically unbounded rates. These additional polylogarithmic overheadsmay be acceptable inmany
reasonable and realistic physical set-ups, though conceptually speaking, ultimately ourwork does not yet deliver
thewidely sought after constant overhead dynamical decoder.

4.4.Dynamical decoders using directed signaling
Adynamical CAdecoder analyzed byHarrington avoids the required logarithmic speedup of our 3Ddecoder
[20, 41]. The basic working principle is analogous to traditionalMWPMheuristics [42). The subsequent fusion
of anyons over larger and larger distances is realized via ( )O Llog hardware layers with each layer being
responsible for a certain class of anyon distances.Most of the cells implement directed signaling between a few
cells that coordinate the correction process. This approach requires inhomogeneous update rules, a certain
structure inside the automaton and synchronous operation. The effective time scales are chosen such that the
correction processes do not interfere between the layers. [20] provides numerics for three lattice sizes that
suggest a threshold between 0.01% and 0.1%. [31]finds similar numbers for the crossings.

It is worth noting that neither our cellular automaton decoders, nor the directed signaling ones in [20, 31]
can conclusively claimnumerical evidence for a fault-tolerant threshold.However, both have very similar
behavior, with crossings shifting to lower values of p as the system size increases, but providing very significant
increases in survival time as a function of system size. The directed signaling decoder in [20, 31] are claimed to
provably have a threshold for a steep hierarchical structure.We take this as encouraging evidence that our
decoderwill have a fault-tolerant threshold for low enough p.

4.5. Existence of constant overhead decoders
The fundamental challenge in building topological quantummemories is formulated in the established
conjecture that self-correcting quantummemories only exist in four or higher dimensions [43–46]. This leads to
the rule of thumb that 1D classical and 2Dquantummemories share fundamental features and equally, 2D
classical and 4Dquantummemories. Classicalmemories in 2D can exhibit a thermal phase transition, as, e.g.,
realized by a 2D Isingmodel (for the connection between thermal phase transitions and quantum error
correction, see, e.g., [47]). Again in 2D, dynamical decoders for classicalmemories with constant overhead exist,
as realized by Toom’s rule, based on a two-dimensional binary cellular automaton that is capable of calculating
themajority in the system locally. The same applies to the 4D toric code [2] for quantum error correction, where
the idea of using dynamical decoding for dissipative self correcting has already been studied [39].While there are
no thermal phase transitions in 1D for classical Hamiltonian systems, there do exist ordered phases in one-
dimensional interacting particle systems. This is constructively proven by the seminal work ofGács [36–38]. In
the light of dynamical decoders, Gács’ cellular automaton can be interpreted as an asynchronous dynamical
decoder that removes string-like excitations from classical 1D systems using only constant overhead.Harrington
has speculated that this ought to generalize to a two-dimensional quantum code [20]. However, even in 1D, the
Gács algorithm is tremendously complexwith no numerical or experimental realization known to the authors.
Analytic work estimates theGács 1D threshold at∼2−1000, so presently the outlook is poor for such an approach
to yield a quantumdecoder of practical relevance.

5.Discussion and outlook

In this workwe have introduced a class of dynamical decoders that are suited for operating on a large number of
physical and logical qubits. Our proposal of a 3Df-automaton as an asynchronous dynamical decoder suggests
that very simple algorithmswithmodest overhead can exhibit significant error suppression, even in the presence

8

New J. Phys. 19 (2017) 063012 MHerold et al



ofmeasurement errors. Also, we have shownhownewdecoding algorithms provide a blueprint for engineering
dissipative self-correctingmemories. The arguments given in [6] are likely to rule out the possibility to achieve
robustness in quantummemories by introducing additional terms in theHamiltonian.

Therefore, it seems imperative to circumvent no-go theorems forHamiltonian self-correctingmemories by
either considering codes not covered by such theorems [46]; or to engineer dissipation that renders the code in
effect self correcting. This constitutes an exciting perspective: self-correcting quantummemories in 3Dmaywell
exist, if one lessens the requirement that the quantummemories have to be ofHamiltonian nature and allows for
Liouvillian dynamics. Our 3Df-automaton decodermay not yet quite provide afinal answer to those questions,
since the corresponding Lindblad operators contain terms having amild L dependence scaling as Llog2 . In
general the design of dynamical decoders seems to inherit a trade-off between the degree of complexity in the
local rules and the scaling of the local resources.

It provides a clear perspective, however, how such dissipative decoders can be designed. The features of
complete parallelization and asynchronous operation are not only relevant for the implementation also address
the problemofwiring for on-chip architectures [30], and naturally incorporates asynchronous syndrome
measurements, attractive for photonic chip based processors.Markovian dynamical decoders are therefore
particularly interesting playground for fault tolerancewhile providing intrinsic parallelization.

Acknowledgments

We thank BenBrown andBarbara Terhal for helpful discussions and for carefully reading a draft. JE is supported
by theDFG (CRC183), for which this work is specifically relevant for project B2, and (EI 519/7-1), the ERC
(TAQ), EU (AQuS), and the BMBF (Q.com). ETC is supported by the EPSRC (grant EP/M024261/1).MJK is
supported by theCarlsbergfond and theVillum fond.

References

[1] KitaevAY 1997QuantumCommunication, Computing, andMeasurement (Berlin: Springer) pp 181–8
[2] Dennis E, Kitaev A, Landahl A and Preskill J 2002 J.Math. Phys. 43 4452
[3] Nussinov Z andOrtiz G 2008Phys. Rev.B 77 064302
[4] HammaA,CastelnovoC andChamonC2009Phys. Rev.B 79 245122
[5] Alicki R, FannesMandHorodeckiM2009 J. Phys. A:Math. Theor. 42 065303
[6] Landon-Cardinal O, Yoshida B, PoulinD and Preskill J 2015Phys. Rev.A 91 032303
[7] BardynC-E andKarzig T 2016Phys. Rev.B 94 094303
[8] Taminiau TH,Cramer J, van der Sar T, Dobrovitski VV andHansonR 2014Nat. Nanotechnol. 9 171
[9] WaldherrG et al 2014Nature 506 204
[10] Sun L et al 2014Nature 511 444
[11] Kelly J et al 2015Nature 519 66
[12] Terhal B 2015Rev.Mod. Phys. 87 307
[13] WangC,Harrington J andPreskill J 2003Ann. Phys. 303 31
[14] Fowler AG,Whiteside AC andHollenberg LCL 2012Phys. Rev.A 86 042313
[15] Duclos-Cianci G and PoulinD2010Phys. Rev. Lett. 104 050504
[16] Bravyi S andHaah J 2013Phys. Rev. Lett. 111 200501
[17] Wootton J R and LossD 2012Phys. Rev. Lett. 109 160503
[18] Hutter A,Wootton J R and LossD 2014Phys. Rev.A 89 022326
[19] HeroldM,Campbell E T, Eisert J andKastoryanoM J 2015NPJQuantum Inf. 1 15010
[20] Harrington JW2004Analysis of quantum error-correcting codes: symplectic lattice codes and toric codesPhDThesisCalifornia

Institute of Technology
[21] Terhal B 2016 private communication
[22] Hutter A, LossD andWootton J R 2015New J. Phys. 17 035017
[23] Dauphinais G and PoulinD 2016 arXiv: 1607.02159
[24] Cabrillo C, Cirac J I, Garcia-Fernandez P andZoller P 1999Phys. Rev.A 59 1025
[25] LimYL, Beige A andKwek LC 2005Phys. Rev. Lett. 95 030505
[26] Barrett SD andKokP 2005Phys. Rev.A 71 060310
[27] Campbell E T andBenjamin SC 2008Phys. Rev. Lett. 101 130502
[28] NickersonNH, Li Y andBenjamin SC2013Nat. Commun. 4 1756
[29] Terhal BM,Hassler F andDiVincenzoDP 2012Phys. Rev. Lett. 108 260504
[30] Landau LA, Plugge S, Sela E, AltlandA, Albrecht SMandEgger R 2016Phys. Rev. Lett. 116 050501
[31] BreuckmannNP,Michels D,DuivenvoordenK andTerhal BM2016 Local decoders for the 2D and 4D toric codeQuantum Inf.

Comput. 17 0181
[32] Pedrocchi F L, Chesi S and LossD 2011Phys. Rev.B 83 115415
[33] Pedrocchi F,Hutter A,Wootton J and LossD 2013Phys. Rev.A 88 062313
[34] BombínH2015Phys. Rev.X 5 031043
[35] BrownB J, NickersonNHandBrowneDE 2016Nat. Commun. 7 12302
[36] Gács P 1986 J. Comput. Syst. Sci. 32 15
[37] Gács P 2001 J. Stat. Phys. 103 45
[38] Gray L F 2001 J. Stat. Phys. 103 1

9

New J. Phys. 19 (2017) 063012 MHerold et al

https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevB.77.064302
https://doi.org/10.1103/PhysRevB.79.245122
https://doi.org/10.1088/1751-8113/42/6/065303
https://doi.org/10.1103/PhysRevA.91.032303
https://doi.org/10.1103/PhysRevB.94.094303
https://doi.org/10.1038/nnano.2014.2
https://doi.org/10.1038/nature12919
https://doi.org/10.1038/nature13436
https://doi.org/10.1038/nature14270
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.1103/PhysRevA.86.042313
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.109.160503
https://doi.org/10.1103/PhysRevA.89.022326
https://doi.org/10.1038/npjqi.2015.10
https://doi.org/10.1088/1367-2630/17/3/035017
http://arxiv.org/abs/1607.02159
https://doi.org/10.1103/PhysRevA.59.1025
https://doi.org/10.1103/PhysRevLett.95.030505
https://doi.org/10.1103/PhysRevA.71.060310
https://doi.org/10.1103/PhysRevLett.101.130502
https://doi.org/10.1038/ncomms2773
https://doi.org/10.1103/PhysRevLett.108.260504
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevB.83.115415
https://doi.org/10.1103/PhysRevA.88.062313
https://doi.org/10.1038/ncomms12302
https://doi.org/10.1016/0022-0000(86)90002-4
https://doi.org/10.1023/A:1004823720305
https://doi.org/10.1023/A:1004824203467


[39] Pastawski F, Clemente L andCirac J I 2011Phys. Rev.A 83 012304
[40] KastoryanoM J,WolfMMandEisert J 2013Phys. Rev. Lett. 110 110501
[41] Michnicki K 2015Towards self-correcting quantummemories PhDThesisUniversity ofWashington
[42] AvisD 1983Networks 13 475
[43] Yoshida B 2011Ann. Phys. 326 2566
[44] Pastawski F, KayA, SchuchN andCirac I 2010Quantum Inf. Comput. 10 580
[45] Haah J 2013Commun.Math. Phys. 324 351
[46] Brell CG 2016New J. Phys. 18 013050
[47] LidarDA andBrunTA 2013QuantumError Correction (Cambridge: CambridgeUniversity Press)

10

New J. Phys. 19 (2017) 063012 MHerold et al

https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevLett.110.110501
https://doi.org/10.1002/net.3230130404
https://doi.org/10.1016/j.aop.2011.06.001
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1088/1367-2630/18/1/013050

	1. Introduction
	2. The decoders
	2.1.ϕ-automaton decoders
	2.2. Markovian dynamical decoders
	2.3. Decoding in continuous time

	3. Numerical results
	3.1. Results from simulations
	3.2. Measurement errors
	3.3. Instantly updated ϕ-decoders

	4. Further conceptual characteristics of Markovian dynamical decoders
	4.1. Decoding by open systems dynamics
	4.2. Semigroup representation
	4.3. System size dependencies
	4.4. Dynamical decoders using directed signaling
	4.5. Existence of constant overhead decoders

	5. Discussion and outlook
	Acknowledgments
	References



