61 research outputs found

    Mitigating Environmental and Public-Safety Risks of United States Crude-by-Rail Transport

    Get PDF
    We present a medium-term market equilibrium model of the North American crude oil sector via which we develop a scenario analysis to investigate strategies to mitigate the environmental and public-safety risks from crude-by-rail transportation across the United States. The model captures crude oil movements across rail-roads, pipelines and waterways, while distinguishing between light and heavy crude qualities. We find that restricting rail loads or increasing pipeline capacity from areas driving production will significantly reduce rail movements. However, lifting the United States crude oil export ban in isolation will only increase rail transportation volumes. We show that an integrated policy of targeted rail caps, pipeline investments and lifting the export ban sustainably addresses medium-term crude-by-rail risks in the United States

    The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp)

    Get PDF
    The MESSAGE Integrated Assessment Model (IAM) developed by IIASA has been a central tool of energy-environment-economy systems analysis in the global scientific and policy arena. It played a major role in the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC); it provided marker scenarios of the Representative Concentration Pathways (RCPs) and the Shared Socio-Economic Pathways (SSPs); and it underpinned the analysis of the Global Energy Assessment (GEA). Alas, to provide relevant analysis for current and future challenges, numerical models of human and earth systems need to support higher spatial and temporal resolution, facilitate integration of data sources and methodologies across disciplines, and become open and transparent regarding the underlying data, methods, and the scientific workflow. In this manuscript, we present the building blocks of a new framework for an integrated assessment modeling platform; the \ecosystem" comprises: i) an open-source GAMS implementation of the MESSAGE energy++ system model integrated with the MACRO economic model; ii) a Java/database backend for version-controlled data management, iii) interfaces for the scientific programming languages Python & R for efficient input data and results processing workflows; and iv) a web-browser-based user interface for model/scenario management and intuitive \drag-and-drop" visualization of results. The framework aims to facilitate the highest level of openness for scientific analysis, bridging the need for transparency with efficient data processing and powerful numerical solvers. The platform is geared towards easy integration of data sources and models across disciplines, spatial scales and temporal disaggregation levels. All tools apply best-practice in collaborative software development, and comprehensive documentation of all building blocks and scripts is generated directly from the GAMS equations and the Java/Python/R source code

    A comparison of low carbon investment needs between China and Europe in stringent climate policy scenarios

    Get PDF
    The radical change in recent global climate governance calls for China and Europe to ramp up their efforts in leading the world to reach the long-term climate goals. By analyzing the results from the state-of-the-art global integrated assessment model, MESSAGEix-GLOBIOM, this paper aims to understand the future levels of financial investment needed for building and maintaining energy-related infrastructure in the two regions for fulfilling stringent targets consistent with 'well below 2 °C'. The results indicate that a rapid upscaling and structural change of these investments towards decarbonization are necessitated by the climate stringent scenarios. China and Europe need to increase their low carbon investments by 65% and 38% in a scenario reaching the 2° target relative to their respective reference scenarios which assume no such target from 2016–2050. In a more stringent climate policy scenario of the 1.5° target, these investment needs will increase by 149% and 79% for China and Europe respectively. Among all the energy sectors, energy efficiency, renewable electricity generation and electricity transmission and distribution are the three largest investing targets for the two regions. However, those investments will not likely be realized without strong policy incentives. Implications for green finance and multilateral cooperation initiatives are discussed in the context of the scenario results

    Balancing clean water-climate change mitigation tradeoffs

    Get PDF
    Energy systems support technical solutions fulfilling the United Nations’ Sustainable Development 2 Goal for clean water and sanitation (SDG6), with implications for future energy demands and greenhouse 3 gas emissions. The energy sector is also a large consumer of water, making water efficiency targets in4 grained in SDG6 important constraints for long-term energy planning. Here, we apply a global integrated 5 assessment model to quantify the cost and characteristics of infrastructure pathways balancing SDG6 tar6 gets for water access, scarcity, treatment and efficiency with long-term energy transformations limiting climate warming to 1.5 ◦ 7 C. Under a mid-range human development scenario, we find that approximately 8 1 trillion USD2010 per year is required to close water infrastructure gaps and operate water systems consistent with achieving SDG6 goals by 2030. Adding a 1.5 ◦ 9 C climate policy constraint increases these costs by up to 8 %. In the reverse direction, when the SDG6 targets are added on top of the 1.5 ◦ 10 C policy 11 constraint, the cost to transform and operate energy systems increases 2 to 9 % relative to a baseline 1.5 ◦ 12 C scenario that does not achieve the SDG6 targets by 2030. Cost increases in the SDG6 pathways 13 are due to expanded use of energy-intensive water treatment and costs associated with water conserva14 tion measures in power generation, municipal, manufacturing and agricultural sectors. Combined global spending (capital and operational expenditures) in the integrated SDG6-1.5 ◦ 15 C scenarios to 2030 on water and energy systems increases 92 to 125 % relative to a baseline scenario without 1.5 ◦ 16 C and SDG6 17 constraints. Evaluation of the multi-sectoral policies underscores the importance of water conservation 18 and integrated water-energy planning for avoiding costs from interacting water, energy and climate goals

    Decarbonization pathways and energy investment needs for developing Asia in line with 'well below' 2 °C

    Get PDF
    Exploring potential future pathways for developing Asia’s energy consumption, CO2 emissions and infrastructure investment needs is essential to understanding how the countries of this rapidly growing region may contribute to the global climate targets set out in the 2015 Paris Agreement. To this end, this study employs the state-of-the-art global integrated assessment model MESSAGEix-GLOBIOM to investigate mid-century decarbonization strategies for developing Asia to 2050. Our results indicate that a radical change in the energy portfolio is required to reach the target of ‘well below’ 2°C. Specifically, our scenarios point to a rapid reduction of fossil fuel utilization, enhancement of low-carbon energy supply, and boosting of energy efficiency efforts. Such a transformation leads to a deep cut in CO2 emissions by 78% and 93% by 2050 in scenarios consistent with the 2°C and 1.5°C targets, respectively. Electricity generation and final energy consumption become dominated by low-carbon energy by 2050 in these scenarios. In terms of investment needs beyond a baseline scenario, the 2°C and 1.5°C pathways imply that the scale of low-carbon investment may need to double and triple, respectively. These increases would be partially offset by disinvestment in coal, oil and natural gas extraction and conversion infrastructure. Decarbonizing the energy system also impacts the capital needed for making progress on other sustainable development goals (SDGs), such as air pollution, clean water and food security

    pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios [version 2; peer review: 3 approved]

    Get PDF
    The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications

    Restauration morpho-dynamique et redynamisation de la section court-circuitée du Rhin en aval du barrage de Kembs (projet INTERREG / EDF)

    Get PDF
    National audienceThe Upper Rhine River has been heavily impacted by channelization for flood protection and navigation, and then by damming for hydropower generation. In normal non flooding conditions, most of the flows are diverted in a canalized section whereas the regulated “old Rhine” bypassed reach runs a minimum flow. Between Huningue and Neuf-Brisach, engineering works induced simplification and stabilization of the channel pattern from a formerly braiding sector to a single incised channel, hydrological modifications, bottom armouring due to bedload decrease, and thus ecological alterations. Two complementary and interdisciplinary projects have been initiated to restore alluvial morphodynamics: i) the international “INTERREG IV - Redynamisation of the old Rhine” project (2009-2012) coordinated by the Alsace region, France; ii) the left bank “controlled erosion” project launched by Electricité de France (EDF) within Kembs hydroelectric station relicensing process since 2003-2004. The purpose of these projects is to evaluate the feasibility of an important hydro-morphological and ecological restoration plan on a 45 km long reach, through both field testing of bank erosion techniques at favourable locations, and artificial sediments input from right bank excavations. This will help define possible long term prospective scenarios, in order to restore sustainable sediment transport, morphodynamics variability and associated ecological functions. The study will involve historical analysis, hydro-morphological / hydraulic physical and numerical modelling, physical and ecological monitoring, and sociological aspectsLe Rhin alsacien-allemand a enregistré de profondes modifications morphologiques et hydrologiques à la suite de sa correction et de sa régularisation pour la protection contre les crues et la navigation, puis après la construction de barrages hydro-électriques. Les aménagements réalisés entre Huningue et Neuf-Brisach ont engendré une simplification et une stabilisation du style fluvial. Un fleuve en tresses a cédé la place à un chenal unique incisé. Le fond de chenal est devenu pavé à cause d’une diminution des apports de charge de fond et des altérations écologiques ont été observées (simplification des habitats aquatiques et riverains). Deux projets complémentaires et interdisciplinaires ont été engagés afin de restaurer une dynamique des formes alluviales : i) le projet international INTERREG IV – Redynamisation du Vieux Rhin (2009-2012) sous l’impulsion de la région Alsace ; ii) le projet d’érosion maitrisée des berges de la rive gauche conduit par Electricité de France (EDF) dans le cadre du renouvellement de la concession de l’aménagement de Kembs. L’objectif des deux projets est de définir un plan de restauration hydro-morphologique et écologique conduisant à la redynamisation d’un tronçon de 45 km. L’étude repose sur une analyse historique, l’exploitation de modèles à la fois physiques et numériques, et les suivis morphologiques in situ d’une recharge artificielle en sédiments et d’érosions de berge contrôlées. Ces études de faisabilité sont complétées par des analyses écologique et sociologique pour apprécier l’impact socio-environnemental de ces projets
    corecore