97 research outputs found

    Maternal presence or absence alters nociceptive responding and cortical anandamide levels in juvenile female rats

    Get PDF
    The influence of parental support on child pain experiences is well recognised. Accordingly, animal studies have revealed both short- and long-term effects of early life stress on nociceptive responding and neural substrates such as endocannabinoids. The endocannabinoid system plays an important role in mediating and modulating stress, social interaction, and nociception. This study examined the effects of maternal support or acute isolation on nociceptive responding of female rats to a range of stimuli during the juvenile pre-adolescent period and accompanying changes in the endocannabinoid system. The data revealed that juvenile female Sprague Dawley rats (PND21-24) isolated from the dam for 1 hr prior to nociceptive testing exhibited increased latency to withdraw in the hot plate test and increased mechanical withdrawal threshold in the Von Frey test, compared to rats tested in the presence of the dam. Furthermore, isolated rats exhibited reduced latency to respond in the acetone drop test and enhanced nociceptive responding in the formalin test when compared to dam-paired counterparts. Anandamide, but not 2-AG, levels were reduced in the prefrontal cortex of dam-paired, but not isolated, juvenile rats following nociceptive testing. There was no change in the expression of CB1, FAAH or MAGL; however, CB2 receptor expression was reduced in both dam-paired and isolated rats following nociceptive testing. Taken together the data demonstrate that brief social isolation or the presence of the dam modulates nociceptive responding of juvenile rat pups in a modality specific manner, and suggest a possible role for the endocannabinoid system in the prefrontal cortex in sociobehavioural pain responses during early life

    Exploring factors associated with Trichuris trichiura infection in school children in a high-transmission setting in Kenya

    Get PDF
    Objectives: Kenya has implemented a national school-based deworming program, which has led to substantial decline in the prevalence of soil-transmitted helminths (STHs), although some pockets of infections remain. To effectively design an STH control program that leads to significant reductions of Trichuris trichiura, there is a need to understand the drivers of persistent infection despite ongoing treatment programs. Methods: This study was conducted between July and September 2019 at the south coast of Kenya, using a two-stage sampling design. First, a school-based cross-sectional survey was conducted in 2265 randomly selected school children from selected schools in areas known to be endemic for T. trichiura . After this, we conducted a nested case-control study wherein all children positive for T. trichiura (142) were matched to 148 negative controls based on age and village. A household survey was then conducted with all household members of cases and controls. In addition, a subsample of 116 children found to be infected with T. trichiura were followed up to assess the efficacy of albendazole at day 21 post-treatment. The predictors of presence of T. trichiura were investigated through multilevel logistic regression, considering clustering of infection. Results: Overall, 34.4% of the children were infected with at least one STH species; T. trichiura was the most common (28.3%), 89.1% of those with T. trichiura had light-intensity infections. The prevalence of T. trichiura was significantly higher in male children and was positively associated with younger age and number of people infected with T. trichiura in a household. The parasitological cure rate and egg reduction rate of T. trichiura were 35% and 51%, respectively. Other STHs identified were hookworm (9.6%) and Ascaris lumbricoides (5.7%). Conclusions: T. trichiura remains a significant public health challenge in the study area with albendazole treatment efficacy against the parasite, remaining lower than the World Health Organization–recommended thresholds. Because of the observed focal transmission of T. trichiura in the current area, control efforts tailored to local conditions and targeting lower implementation units should be used to achieve optimal results on transmission.Fil: Kepha, Stella. Kenya Medical Research Institute; KeniaFil: Mazigo, Humphrey D.. Catholic University of Health and Allied Sciences; TanzaniaFil: Odiere, Maurice R.. Kenya Medical Research Institute; KeniaFil: Mcharo, Carlos. Kenya Medical Research Institute; KeniaFil: Safari, Th'uva. Kenya Medical Research Institute; KeniaFil: Gichuki, Paul M.. Kenya Medical Research Institute; KeniaFil: Omondi, Wykcliff. No especifíca;Fil: Wakesho, Florence. No especifíca;Fil: Krolewiecki, Alejandro Javier. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pullan, Rachel L.. No especifíca;Fil: Mwandawiro, Charles S.. Kenya Medical Research Institute; KeniaFil: Oswald, William E.. No especifíca;Fil: Halliday, Katherine E.. No especifíca

    Poor concordance between interferon-γ release assays and tuberculin skin tests in diagnosis of latent tuberculosis infection among HIV-infected individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A new generation of diagnostic tests, the interferon-γ release assays (IGRAs), have been developed for the detection of latent tuberculosis infection (LTBI). Limited data are available on their use in HIV-infected persons.</p> <p>Methods</p> <p>A cross-sectional study was carried out at 2 HIV clinics in Atlanta to assess the utility of two IGRA tests (T-SPOT.TB [TSPOT] and QuantiFERON-TB Gold in Tube [QFT-3G]) compared to the tuberculin skin test (TST).</p> <p>Results</p> <p>336 HIV-infected persons were enrolled. Median CD4 count was 335 cells/μl and median HIV viral load was 400 copies/ml. Overall, 27 patients (8.0%) had at least 1 positive diagnostic test for LTBI: 7 (2.1%) had a positive TST; 9 (2.7%) a positive QFT-3G; and 14 (4.2%) a positive TSPOT. Agreement between the 3 diagnostic tests was poor: TST and TSPOT, [κ = 0.16, 95% CI (-0.06, 0.39)], TST and QFT-3G [κ = 0.23, 95% CI (-0.05, 0.51)], QFT-3G and TSPOT [κ = 0.06, 95% CI (-0.1, 0.2)]. An indeterminate test result occurred among 6 (1.8%) of QFT-3G and 47 (14%) of TSPOT tests. In multivariate analysis, patients with a CD4 ≤ 200 cells/μl were significantly more likely to have an indeterminate result [OR = 3.6, 95% CI (1.9, 6.8)].</p> <p>Conclusion</p> <p>We found a low prevalence of LTBI and poor concordance between all 3 diagnostic tests. Indeterminate test results were more likely at CD4 counts ≤ 200 cells/μl. Additional studies among HIV-infected populations with a high prevalence of TB are needed to further assess the utility of IGRAs in this patient population.</p

    Peak grain forecasts for the US High Plains amid withering waters

    Get PDF
    Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas

    UV activation of polymeric high aspect ratio microstructures: Ramifications in antibody surface loading for circulating tumor cell selection

    Get PDF
    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ???3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer&apos;s damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device&apos;s cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.close9

    American Gut: an Open Platform for Citizen Science Microbiome Research

    Get PDF
    McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore