35 research outputs found

    NIMBUS: The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

    Get PDF
    We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This design is capable of characterizing a large sample of extrasolar planet atmospheres by measuring elemental and molecular abundances during primary transit and occultation. This wide-field spectroimager would also provide new insights into Trans-Neptunian Objects (TNO), Solar System occultations, brown dwarf atmospheres, carbon chemistry in globular clusters, chemical gradients in nearby galaxies, and galaxy photometric redshifts. NIMBUS would be the premier ultraprecise spectroimager by taking advantage of the SOFIA observatory and state of the art infrared technologies. This optical design splits the beam into eight separate spectral bandpasses, centered around key molecular bands from 1 to 4 microns. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise calibration for imaging and photometry for a wide variety of astrophysical sources. NIMBUS produces the same data products as a low-resolution integral field spectrograph over a large spectral bandpass, but this design obviates many of the problems that preclude high-precision measurements with traditional slit and integral field spectrographs. This instrument concept is currently not funded for development.Comment: 14 pages, 9 figures, SPIE Astronomical Telescopes and Instrumentation 201

    An improved pig reference genome sequence to enable pig genetics and genomics research.

    Get PDF
    BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs

    Malaria parasitemia among blood donors in Uganda

    Get PDF
    Background: Malaria remains a leading transfusion associated infectious risk in endemic areas. However, the prevalence of malaria parasitemia has not been well characterized in blood donor populations. This study sought to determine the prevalence of Plasmodium in red blood cell (RBC) and whole blood (WB) units after the rainy season in Uganda. Methods and materials: Between May and July 2018, blood was collected from the sample diversion pouch of 1000 WB donors in Kampala and Jinja, Uganda. The RBC pellet from ethylenediamine tetraacetic acid (EDTA) anticoagulated blood was stored at -80°C until testing. DNA was extracted and nested PCR was used to screen samples at the genus level for Plasmodium, with positive samples further tested for species identification. Results: Malaria parasitemia among asymptomatic, eligible blood donors in two regions of Uganda was 15.4%; 87.7% (135/154) of infections were with P. falciparum, while P. malariae and P. ovale were also detected. There were 4.3% of blood donors who had mixed infection with multiple species. Older donors (>30 years vs. 17-19 years; aPR = 0.31 [95% CI = 0.17-0.58]), females (aPR = 0.60 [95% CI = 0.42-0.87]), repeat donors (aPR = 0.44 [95% CI = 0.27-0.72]) and those donating near the capital city of Kampala versus rural Jinja region (aPR = 0.49 [95% CI = 0.34-0.69]) had a lower prevalence of malaria parasitemia. Conclusions: A high proportion of asymptomatic blood donors residing in a malaria endemic region demonstrate evidence of parasitemia at time of donation. Further research is needed to quantify the risk and associated burden of transfusion-transmitted malaria (TTM) in order to inform strategies to prevent TTM

    Comparative and demographic analysis of orang-utan genomes

    Get PDF
    Orang-utan- is derived from a Malay term meaning man of the forest- and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N e) expanded exponentially relative to the ancestral N e after the split, while Bornean N e declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts. © 2011 Macmillan Publishers Limited. All rights reserved

    [Avian cytogenetics goes functional] Third report on chicken genes and chromosomes 2015

    Get PDF
    High-density gridded libraries of large-insert clones using bacterial artificial chromosome (BAC) and other vectors are essential tools for genetic and genomic research in chicken and other avian species... Taken together, these studies demonstrate that applications of large-insert clones and BAC libraries derived from birds are, and will continue to be, effective tools to aid high-throughput and state-of-the-art genomic efforts and the important biological insight that arises from them

    Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)

    Get PDF
    The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls

    Transcending Sovereignty: Locating Indigenous Peoples in Transboundary Water Law

    Full text link
    corecore