39 research outputs found

    Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

    Get PDF
    Abstract Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT 2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by chorus waves than previously expected. For such intense duskside chorus waves, the occurrence probability, the preferential excitation conditions, the time duration, and the accurate contribution to the long-term evolution of radiation belt electron fluxes may need further investigations in future

    Determination of banned pigment quinoline yellow in pastries by salting out assisted-high performance liquid chromatography

    Get PDF
    ObjectiveTo develop an analytical method for fast determination of banned pigment quinoline yellow in pastries by salting out assisted-high performance liquid chromatography.MethodsThe sample was extracted with 40% methanol-sodium chloride-water, precipitated with potassium ferrocyanide-zinc acetate solution, eluted with mobile phase of methanol-0.02 mol/L ammonium acetate solution, separated by X-Bridge C18 column v(150 mm×4.6 mm, 3.5 μm), and detected with diode -array detector by external standard method.ResultsThe method showed good linearity (r>0.999) in the range of 0.4-40.0 μg/mL. The limit of detection (S/N=3) was 1.25 mg/kg and the limit of quantification (S/N=10) was 5.0 mg/kg. The average recoveries of three different concentrations level at 5.0, 10.0 and 50.0 mg/kg ranged from 89.18% to 110.10%, with relative standard deviation in the range of 2.83%-8.65%.ConclusionThe method was convenient, accurate and reproducible, and it was suitable for qualitative and quantitative analysis of banned pigment quinoline yellow in pastries

    Magnetohydrodynamic Simulation of the Interaction between Interplanetary Strong Shock and Magnetic Cloud and its Consequent Geoeffectiveness 2: Oblique Collision

    Full text link
    Numerical studies of the interplanetary "shock overtaking magnetic cloud (MC)" event are continued by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the orientations are only determined respectively by their heliographic locations. OC is investigated in contrast with the results in DC \citep{Xiong2006}. The shock front behaves as a smooth arc. The cannibalized part of MC is highly compressed by the shock front along its normal. As the shock propagates gradually into the preceding MC body, the most violent interaction is transferred sideways with an accompanying significant narrowing of the MC's angular width. The opposite deflections of MC body and shock aphelion in OC occur simultaneously through the process of the shock penetrating the MC. After the shock's passage, the MC is restored to its oblate morphology. With the decrease of MC-shock commencement interval, the shock front at 1 AU traverses MC body and is responsible for the same change trend of the latitude of the greatest geoeffectiveness of MC-shock compound. Regardless of shock orientation, shock penetration location regarding the maximum geoeffectiveness is right at MC core on the condition of very strong shock intensity. An appropriate angular difference between the initial eruption of an MC and an overtaking shock leads to the maximum deflection of the MC body. The larger the shock intensity is, the greater is the deflection angle. The interaction of MCs with other disturbances could be a cause of deflected propagation of interplanetary coronal mass ejection (ICME).Comment: 38 pages, 8 figure

    Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

    Get PDF
    Abstract Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes, and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons

    Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

    Get PDF
    Abstract Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21-24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L\u3e5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors and the importance of chorus-driven local acceleration even during the nonstorm times

    Magnetohydrodynamic Simulation of the Interaction between Interplanetary Strong Shock and Magnetic Cloud and its Consequent Geoeffectiveness

    Full text link
    Numerical studies have been performed to interpret the observed "shock overtaking magnetic cloud (MC)" event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC-shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along heliospheric equator, separated by an appropriate interval. The results show that the shock firstly catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC-driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a central concave and a smooth arc respectively. The compression and rotation of magnetic field serve as an efficient mechanism to cause a large geomagnetic storm. The MC is highly compressed by the the overtaking shock. Contrarily, the transport time of incidental shock influenced by the MC depends on the interval between their commencements. Maximum geoeffectiveness results from that when the shock enters the core of preceding MC, which is also substantiated to some extent by a corresponding simplified analytic model. Quantified by DstDst index, the specific result gives that the geoeffectiveness of an individual MC is largely enhanced with 80% increment in maximum by an incidental shock.Comment: 45 pages, 9 figure

    Disappearance of plasmaspheric hiss following interplanetary shock

    Get PDF
    Abstract Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss

    Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision

    Full text link
    The numerical studies of the interplanetary coupling between multiple magnetic clouds (MCs) are continued by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. The interplanetary direct collision (DC) / oblique collision (OC) between both MCs results from their same/different initial propagation orientations. Here the OC is explored in contrast to the results of the DC (Xiong et al., 2007). Both the slow MC1 and fast MC2 are consequently injected from the different heliospheric latitudes to form a compound stream during the interplanetary propagation. The MC1 and MC2 undergo contrary deflections during the process of oblique collision. Their deflection angles of δθ1|\delta \theta_1| and δθ2|\delta \theta_2| continuously increase until both MC-driven shock fronts are merged into a stronger compound one. The δθ1|\delta \theta_1|, δθ2|\delta \theta_2|, and total deflection angle Δθ\Delta \theta (Δθ=δθ1+δθ2\Delta \theta = |\delta \theta_1| + |\delta \theta_2|) reach their corresponding maxima when the initial eruptions of both MCs are at an appropriate angular difference. Moreover, with the increase of MC2's initial speed, the OC becomes more intense, and the enhancement of δθ1\delta \theta_1 is much more sensitive to δθ2\delta \theta_2. The δθ1|\delta\theta_1| is generally far less than the δθ2|\delta\theta_2|, and the unusual case of δθ1δθ2|\delta\theta_1|\simeq|\delta\theta_2| only occurs for an extremely violent OC. But because of the elasticity of the MC body to buffer the collision, this deflection would gradually approach an asymptotic degree. Therefore, the deflection due to the OC should be considered for the evolution and ensuing geoeffectiveness of interplanetary interaction among successive coronal mass ejections (CMEs).Comment: 51 pages, 13 figures, JGR - Space Physics, in pres

    Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness

    Full text link
    Numerical studies of the interplanetary "multiple magnetic clouds (Multi-MC)" are performed by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Both slow MC1 and fast MC2 are initially emerged along the heliospheric equator, one after another with different time interval. The coupling of two MCs could be considered as the comprehensive interaction between two systems, each comprising of an MC body and its driven shock. The MC2-driven shock and MC2 body are successively involved into interaction with MC1 body. The momentum is transferred from MC2 to MC1. After the passage of MC2-driven shock front, magnetic field lines in MC1 medium previously compressed by MC2-driven shock are prevented from being restored by the MC2 body pushing. MC1 body undergoes the most violent compression from the ambient solar wind ahead, continuous penetration of MC2-driven shock through MC1 body, and persistent pushing of MC2 body at MC1 tail boundary. As the evolution proceeds, the MC1 body suffers from larger and larger compression, and its original vulnerable magnetic elasticity becomes stiffer and stiffer. So there exists a maximum compressibility of Multi-MC when the accumulated elasticity can balance the external compression. With respect to Multi-MC geoeffectiveness, the evolution stage is a dominant factor, whereas the collision intensity is a subordinate one. The magnetic elasticity, magnetic helicity of each MC, and compression between each other are the key physical factors for the formation, propagation, evolution, and resulting geoeffectiveness of interplanetary Multi-MC.Comment: 56 pages, 11 figure

    S.: 2009, Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision

    No full text
    [1] Numerical studies have been performed to interpret the observed ''shock overtaking magnetic cloud (MC)'' event by a 2.5 dimensional magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with a very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of the MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC-shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along the heliospheric equator, separated by an appropriate interval. The results show that the shock first catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC-driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a central concave and a smooth arc, respectively. The compression and rotation of the magnetic field serve as an efficient mechanism to cause a large geomagnetic storm. The MC is highly compressed by the overtaking shock. Contrarily, the transport time of the incidental shock influenced by the MC depends on the interval between their commencements. Maximum geoeffectiveness results from when the shock enters the core of preceding MC, which is also substantiated to some extent by a corresponding simplified analytic model. Quantified by the Dst index, the specific result is that the geoeffectiveness of an individual MC is largely enhanced with 80% increment in maximum by an incidental shock. Citation: Xiong, M., H. Zheng, Y. Wang, and S. Wang (2006), Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness
    corecore