41 research outputs found

    Vaccination against Extracellular Vimentin for Treatment of Urothelial Cancer of the Bladder in Client-Owned Dogs

    Get PDF
    It was recently shown that targeting extracellular vimentin (eVim) is safe and effective in preclinical models. Here, we report the safety and efficacy in client-owned dogs with spontaneous bladder cancer of CVx1, an iBoost technology-based vaccine targeting eVim in combination with COX-2 inhibition. This was a single-arm prospective phase 1/2 study with CVx1 in 20 client-owned dogs with spontaneous UC which involved four subcutaneous vaccinations with CVx1 at 2-week intervals for induction of antibody titers, followed by maintenance vaccinations at 2-month intervals. Additionally, daily cyclooxygenase (COX)-2 inhibition with meloxicam was given. The response was assessed by antibody titers, physical condition, abdominal ultrasound and thorax X-ray. The primary endpoints were the development of antibody titers, as well as overall survival compared to a historical control group receiving carboplatin and COX-2 inhibition with piroxicam. Kaplan–Meier survival analysis was performed. All dogs developed antibodies against eVim. Titers were adequately maintained for the duration of this study. A median overall survival of 374 days was observed, which was 196 days for the historical control group (p < 0.01). Short-term grade 1–2 toxicity at the injection site and some related systemic symptoms peri-vaccination were observed. No toxicity was observed related to the induced antibody response. A limitation of this study is the single-arm prospective setting. CVx1 plus meloxicam consistently induced efficient antibody titers, was well tolerated and showed prolonged survival. The results obtained merit further development for human clinical care

    Targeting Tumor Vascular CD99 Inhibits Tumor Growth

    Get PDF
    CD99 (MIC2; single-chain type-1 glycoprotein) is a heavily O-glycosylated transmembrane protein (32 kDa) present on leukocytes and activated endothelium. Expression of CD99 on endothelium is important in lymphocyte diapedesis. CD99 is a diagnostic marker for Ewing's Sarcoma (EWS), as it is highly expressed by these tumors. It has been reported that CD99 can affect the migration, invasion and metastasis of tumor cells. Our results show that CD99 is also highly expressed in the tumor vasculature of most solid tumors. Furthermore, we found that in vitro CD99 expression in cultured endothelial cells is induced by starvation. Targeting of murine CD99 by a conjugate vaccine, which induced antibodies against CD99 in mice, resulted in inhibition of tumor growth in both a tumor model with high CD99 (Os-P0109 osteosarcoma) and low CD99 (CT26 colon carcinoma) expression. We demonstrated that vaccination against CD99 is safe, since no toxicity was observed in mice with high antibody titers against CD99 in their sera during a period of almost 11 months. Targeting of CD99 in humans is more complicated due to the fact that the human and mouse CD99 protein are not identical. We are the first to show that growth factor activated endothelial cells express a distinct human CD99 isoform. We conclude that our observations provide an opportunity for specific targeting of CD99 isoforms in human tumor vasculature

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Development of a Cancer Vaccine Targeting Tumor Blood Vessels

    No full text
    A treatment strategy for cancer is the suppression of tumor growth by directing an immune response to the tumor vessels, which will destroy the tissue. In this thesis we describe the development of a vaccine that targets antigens expressed around angiogenic vasculature in most solid tumors. These antigens are alternative spliced extra domains of glycoproteins present in the extracellular matrix; e.g. the extra domain-B (ED-B) and extra domain-A (ED-A) of fibronectin and the C-domain of tenascin-C (TNCC). We show that it is possible to break self-tolerance and induce a strong antibody response against ED-B by vaccination. Furthermore, tumor growth was inhibited and the changes observed in the tumor tissue were consistent with an attack of the tumor vasculature by the immune system. For clinical development of therapeutic vaccines, targeting self-molecules like ED-B, a potent but non-toxic biodegradable adjuvant is required. The squalene-based Montanide ISA 720 (M720) in combination with CpG DNA fulfilled these requirements and induced an equally strong anti-self immune response as the preclinical golden standard Freund’s adjuvant. We have further characterized the immune response against ED-B generated with the adjuvant M720/GpG.  The ED-B vaccine also inhibited tumor growth in a therapeutic setting in a transgenic mouse model of pancreatic insulinoma in which tumorigenesis was already initiated. Furthermore, antibodies against ED-A and TNCC could be induced in mice and rabbits. We analyzed the expression of ED-A in breast tumors of transgenic MMTV-PyMT mice, a metastatic breast cancer model, with the aim to use this model to study the effect of an ED-A vaccine on metastasis. We also detected ED-B in canine mammary tumor tissue. Therefore vascular antigens might also represent potential therapeutic targets in dogs.  All together our preclinical data demonstrate that a vaccine targeting tumor blood vessels is a promising new approach for cancer treatment.

    The revival of cancer vaccines - The eminent need to activate humoral immunity

    No full text
    In light of the increasing number of approved monoclonal antibodies for the treatment of cancer, it seems peculiar that the development of antibody inducing vaccines gets so little attention. In our view there is a tremendous opportunity in the development of cancer vaccines inducing humoral immune responses, involving a couple of major advantages. Firstly, the effectivity of a polyclonal antibody response is expected to exceed the one of monoclonal antibodies. This is supported by preclinical data that show pronounced anti-tumor responses and early clinical trials in which benefit is observed in patients with advanced cancer. Secondly, vaccination strategies are expected to reduce hospital visits, resulting in enhanced quality of life. And last but not least, vaccination strategies are extremely cost effective, alleviating the socioeconomic problems of prohibitively high drug costs. To reach further clinical success, efforts should focus on target identification, optimization of vaccination strategies and adjuvant development

    Secreted frizzled-related protein 2: a key player in noncanonical Wnt signaling and tumor angiogenesis

    No full text
    Secreted frizzled-related proteins (SFRP) are glycoproteins containing a so-called frizzled-like cysteine-rich domain. This domain enables them to bind to Wnt ligands or frizzled (FzD) receptors, making potent regulators of Wnt signaling. As Wnt signaling is often altered in cancer, it is not surprising that Wnt regulators such as SFRP proteins are often differentially expressed in the tumor microenvironment, both in a metastatic and non-metastatic setting. Indeed, SFRP2 is shown to be specifically upregulated in the tumor vasculature of several types of cancer. Several studies investigated the functional role of SFRP2 in the tumor vasculature, showing that SFRP2 binds to FzD receptors on the surface of tumor endothelial cells. This activates downstream Wnt signaling and which is, thereby, stimulating angiogenesis. Interestingly, not the well-known canonical Wnt signaling pathway, but the noncanonical Wnt/Ca2+ pathway seems to be a key player in this event. In tumor models, the pro-angiogenic effect of SFRP2 could be counteracted by antibodies targeting SFRP2, without the occurrence of toxicity. Since tumor angiogenesis is an important process in tumorigenesis and metastasis formation, specific tumor endothelial markers such as SFRP2 show great promise as targets for anti-cancer therapies. This review discusses the role of SFRP2 in noncanonical Wnt signaling and tumor angiogenesis, and highlights its potential as anti-angiogenic therapeutic target in cancer

    Tumors resurrect an embryonic vascular program to escape immunity

    No full text
    Tumors can escape immunity through multiple mechanisms, one of which is by enforcing a state of unresponsiveness of the tumor vasculature to inflammatory cytokines. This results in a lack of adhesiveness of angiogenic endothelial cells for immune cells and thus compromised immunity. This type of escape from immunity, called tumor endothelial cell anergy, is the result of exposure to angiogenic growth factors. Angiogenesis is a hallmark not only of cancer but also of embryonic development. It is assumed that angiogenesis-induced suppression of adhesion molecules is a regulatory function to provide an embryo with immune privileged conditions and allow uninterrupted growth and development. It is becoming clear that similar conditions are used by tumors to evade the immune system and ensure progressive growth. Gaining enhanced insight into these immune-privileged conditions is important as endothelial cell anergy can be overcome by angiogenesis inhibitors, an application that is rapidly emerging as a successful strategy to improve immunotherapy. The literature on endothelial adhesion molecule expression and leukocyte-vessel wall interactions during embryonic and fetal development is sparse, but available data allow the hypothesis that tumors, through angiogenesis, enforce an embryonic-like gene expression program in endothelial cells to suppress leukocyte infiltration and compromise antitumor immunity

    Cancer Vaccination against Extracellular Vimentin Efficiently Adjuvanted with Montanide ISA 720/CpG

    No full text
    Extracellular vimentin is a specific marker of the tumor vasculature, where it is secreted by tumor endothelial cells. Vaccination with a conjugate vaccine targeting extracellular vimentin was previously shown to induce a potent humoral immune response and tumor growth inhibition in mice. These data were obtained by vaccination using the toxic Freund’s adjuvant (FA) and are therefore not directly translatable into the clinic. In the present study, we aimed to investigate the potential of the biodegradable Montanide ISA 720 adjuvant. We tested Montanide either alone (MN) or supplemented with CpG 1826 (MN-C). Both adjuvant compositions, as well as FA, resulted in a significant tumor growth inhibition and decreased vessel density in the B16F10 melanoma tumor model. Vaccination of mice with either FA or MN-C resulted in an equally potent humoral immune response towards vimentin, while the antibody titers obtained with MN alone were significantly lower compared to FA. Vaccination coincided with the infiltration of immune cells. The highest number of intratumoral immune cells was seen in tumors from the MN-C group. Therefore, we conclude that Montanide ISA 720 supplemented with CpG allows efficient vaccination against extracellular vimentin, which is a prerequisite for the transfer of the vaccine into the clinic

    Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors

    No full text
    Macrophages are innate phagocytic leukocytes that are highly present in solid tumors, where they are referred to as tumor-associated macrophages (TAMs). In solid tumors, the microenvironment is often immunosuppressive and hypoxic regions are prevalent. These hypoxic conditions impose tumor cells to reprogram their metabolism, shifting from oxidative phosphorylation to anaerobic glycolysis. This so-called glycolytic switch enables hypoxic tumor cells to survive, proliferate, and eventually to outcompete untransformed cells. The hypoxia-induced change in tumor cell metabolism leads to the production of oncometabolites, among which are the glycolytic end-metabolite lactate and the tricarboxylic acid cycle intermediate succinate. TAMs can react to these oncometabolites, resulting in an altered maturation and the adoption of pro-angiogenic features. These angiogenesis-promoting TAMs have been reported to cooperate with tumor cells in the formation of new vessels, and even have been considered an important cause of resistance against anti-angiogenic therapies. For a long time, the mechanisms by which lactate and succinate activated pro-angiogenic TAMs were not understood. Researchers now start to unravel and understand some of the underlying mechanisms. Here, the importance of microenvironmental cues in inducing different macrophage activation states is discussed, as well as the role of hypoxia in the recruitment and activation of pro-angiogenic macrophages. In addition, the latest findings on the oncometabolites lactate and succinate in the activation of angiogenesis supporting macrophages are reviewed. Finally, various oncometabolite-targeting therapeutic strategies are proposed that could improve the response to anti-angiogenic therapies. Significance statement: Tumor-associated macrophages (TAMs) are known promotors of tumor neovascularization, and significantly contribute to the emergence of resistance to anti-angiogenic therapies. Recent evidence suggests that the angiogenesis promoting phenotype of TAMs can be activated by hypoxic tumor cell-derived oncometabolites, including lactate and succinate. Here, the latest findings into the lactate- and succinate-mediated mechanistic activation of pro-angiogenic TAMs are reviewed, and therapeutic strategies that interfere with this mechanism and may delay or even prevent acquired resistance to anti-angiogenic agents are discussed
    corecore