24 research outputs found
New insights into landslide processes around volcanic islands from Remotely Operated Vehicle (ROV) observations offshore Montserrat
Submarine landslide deposits have been mapped around many volcanic islands, but interpretations of their structure, composition, and emplacement are hindered by the challenges of investigating deposits directly. Here we report on detailed observations of four landslide deposits around Montserrat collected by Remotely Operated Vehicles, integrating direct imagery and sampling with sediment core and geophysical data. These complementary approaches enable a more comprehensive view of large-scale mass-wasting processes around island-arc volcanoes than has been achievable previously. The most recent landslide occurred at 11.5–14 ka (Deposit 1; 1.7 km3) and formed a radially spreading hummocky deposit that is morphologically similar to many subaerial debris-avalanche deposits. Hummocks comprise angular lava and hydrothermally altered fragments, implying a deep-seated, central subaerial collapse, inferred to have removed a major proportion of lavas from an eruptive period that now has little representation in the subaerial volcanic record. A larger landslide (Deposit 2; 10 km3) occurred at ∼130 ka and transported intact fragments of the volcanic edifice, up to 900 m across and over 100 m high. These fragments were rafted within the landslide, and are best exposed near the margins of the deposit. The largest block preserves a primary stratigraphy of subaerial volcanic breccias, of which the lower parts are encased in hemipelagic mud eroded from the seafloor. Landslide deposits south of Montserrat (Deposits 3 and 5) indicate the wide variety of debris-avalanche source lithologies around volcanic islands. Deposit 5 originated on the shallow submerged shelf, rather than the terrestrial volcanic edifice, and is dominated by carbonate debris
Morphology of late Quaternary submarine landslides along the U.S. Atlantic continental margin
This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 264 (2009): 4-15, doi:10.1016/j.margeo.2009.01.009.The nearly complete coverage of the U.S. Atlantic continental slope and rise by multibeam bathymetry and backscatter imagery provides an opportunity to reevaluate the distribution of submarine landslides along the margin and reassess the controls on their formation. Landslides can be divided into two categories based on their source areas: those sourced in submarine canyons and those sourced on the open continental slope and rise. Landslide distribution is in part controlled by the Quaternary history of the margin. They cover 33% of the continental slope and rise of the glacially influenced New England margin, 16% of the sea floor offshore of the fluvially dominated Middle Atlantic margin, and 13% of the sea floor south of Cape Hatteras. The headwall scarps of open-slope sourced landslides occur mostly on the lower slope and upper rise while they occur mostly on the upper slope in the canyon-sourced ones. The deposits from both landslide categories are generally thin (mostly 20–40 m thick) and comprised primarily of Quaternary material, but the volumes of the open-slope sourced landslide deposits can be larger (1–392 km3) than the canyon-sourced ones (1–10 km3). The largest failures are located seaward of shelf-edge deltas along the southern New England margin and near salt domes that breach the sea floor south of Cape Hatteras. The spatial distribution of landslides indicates that earthquakes associated with rebound of the glaciated part of the margin or earthquakes associated with salt domes were probably the primary triggering mechanism although other processes may have pre-conditioned sediments for failure. The largest failures and those that have the potential to generate the largest tsunamis are the open-slope sourced landslides.The U.S. Nuclear Regulatory Commission and the U.S. Geological
Survey are acknowledged for their support of this research.Work was
funded by US Nuclear Regulatory Commission grant N6480 Physical
study of tsunami sources
HyBIS: a new concept in versatile, 6000-m rated robotic underwater vehicles
The philosophy behind the HyBIS instrument is to develop a technological solution that addresses the specific requirements of the user. Rather than provide a comprehensive engineering capability in a single system (e.g. an ROV), we used the specific scientific needs of the user to inform the design and development of the technology. The result is surprising: a versatile technology, modular in design, that has a low capital cost and is relatively easy to operate. We believe that this approach is both efficient and cost effective. For a fraction of the capital and running cost of a conventional ROV, the HyBIS system meets many of the users' needs. Ensuring that excess capacity and common formats are designed in from the start, the instrument can be easily expanded and developed to meet future requirements. Key to the success of this approach is knowing exactly what the user needs and distinguishing this from what the user thinks they want. This requires a bi-lateral process of information flow: educating both the engineer and the user so that each knows what can be achieved and what is actually required
Exploring ultradeep hydrothermal vents in the Cayman Trough by ROV
The 110-kilometer-long Mid-Cayman Spreading Center (MCSC), located within the Cayman Trough in the Caribbean Sea, is the world’s deepest seafloor spreading rift. Reaching depths beyond 6,000 meters, the MCSC hosts the deepest hydrothermal vents known. This ultradeep volcanic rift was explored by developing and operating the Hydraulic Benthic Interactive Sampler (HyBIS) ROV. The vehicle yielded the discovery of two hydrothermal vent fields on the rift floor: one at 5,000 meters depth and another in the central MCSC located on the side of a large seamount and forming the western flank of the rift.With their contrasting styles of fluid venting, sulfide mineralization, geological setting and host-rock interaction, the differences between these two sites indicate that depth and basement rock type may significantly affect the metal content of hydrothermal seafloor massive sulfide deposits
Geomorphology and sedimentary features in the Central Portuguese submarine canyons, western Iberian margin
The Central Portuguese submarine canyons (Nazaré, Cascais and Setúbal–Lisbon canyons) dissect the Western Iberian margin in an east–west direction from the continental shelf, at water depths shallower than 50 m, down to the Tagus and Iberian abyssal plains, at water depths exceeding 5000 m. We present an analysis of the geomorphology of the canyons and of the sedimentary processes that can be inferred from the observed morphology of the three canyons, based on a compilation of swath bathymetry data and TOBI deep-towed side-scan sonar imagery.
This first complete detailed mapping of the Central Portuguese canyons reveals substantial differences in their morphologies and downslope evolution. The canyons are divided into three sections: 1) canyon head and upper reach, 2) middle canyon, and 3) canyon mouth and distal part. The canyon heads and upper reaches are severely indented into the continental shelf, and they are characterised, in the Nazaré and Setúbal–Lisbon canyons, by sinuous V-shaped valleys entrenched within high canyon walls occupied by rock outcrops dissected by gullies. The Cascais upper canyon is complex, with multiple branches with high axial gradients and signs of mass wasting. Middle canyon sections, indented in the slope, display axial incisions with perched, stacked terraces, and are affected by debris avalanches originating from the canyon walls. At the base of slope, the distal Cascais and Setúbal–Lisbon canyons show many characteristics of channel-lobe transition zones: erosional features such as isolated to amalgamated chevron scours, and depositional bedforms such as mud to gravel waves. Pervasive scouring occurs up to 95 km beyond the canyon mouths. By contrast, the Nazaré canyon opens into a 27 km wide and 94 km long channel, whose flat-bottomed thalweg is occupied by sediment waves, irregular, comet-shaped and crescentic scours, and a second-order channel. Transverse, kilometre-scale sediment waves occupy the overbank area of the southern channel margin.
The present morphology of the Central Portuguese canyons is the result of erosive processes, subsequent sediment transport and deposition, and sediment instability, whereas inherited tectonic fabric controls their location. Morphological differences between the canyons are explained by the main mechanisms driving their activity. Overall, these morphological features suggest that these canyons have acted as an efficient conduit of sediment to the deep basin, transporting large quantities of material to the deep sea during high-energy events
Mingulay Reef Complex : an interdisciplinary study of cold-water coral habitat, hydrography and biodiversity
The Mingulay reef complex in the Sea of the Hebrides west of Scotland was first mapped in 2003 with a further survey in 2006 revealing previously unknown live coral reef areas at 120 to 190 m depth. Habitat mapping confirmed that distinctive mounded bathymetry was formed by reefs of Lophelia pertusa with surficial coral debris dating to almost 4000 yr. Benthic lander and mooring deployments revealed 2 dominant food supply mechanisms to the reefs: a regular rapid downwelling of surface water delivering pulses of warm fluorescent water, and periodic advection of high turbidity bottom waters. Closed chamber respirometry studies suggest that L. pertusa responds to seawater warming, such as that seen during the rapid downwelling events, with increases in metabolic rate. Lipid biomarker analysis implies that corals at Mingulay feed predominantly on herbivorous calanoid copepods. Integrating geophysical and hydrographical survey data allowed us to quantify the roles of these environmental factors in controlling biodiversity of attached epifaunal species across the reefs. Longitudinal structuring of these communities is striking: species richness (α) and turnover (β) change significantly west to east, with variation in community composition largely explained by bathymetric variables that are spatially structured on the reef complex. Vibro-cores through the reef mounds show abundant coral debris with significant hiatuses. High resolution side-scan sonar revealed trawl marks in areas south of the coral reefs where vessel monitoring system data showed the highest density of local fishing activity. The interdisciplinary approach in this study allowed us to record the food supply and hydrographic environment experienced by L. pertusa and determine how it may be ecophysiologically adapted to these conditions. Improved basic understanding of cold-water coral biology and biodiversity alongside efforts to map and date these long-lived habitats are vital to development of future conservation policies
Emplacement of pyroclastic deposits offshore Montserrat: Insights from 3D seismic data
During the current (1995–present) eruptive phase of the Soufrière Hills volcano on Montserrat, voluminous pyroclastic flows entered the sea off the eastern flank of the island, resulting in the deposition of well-defined submarine pyroclastic lobes. Previously reported bathymetric surveys documented the sequential construction of these deposits, but could not image their internal structure, the morphology or extent of their base, or interaction with the underlying sediments. We show, by combining these bathymetric data with new high-resolution three dimensional (3D) seismic data, that the sequence of previously detected pyroclastic deposits from different phases of the ongoing eruptive activity is still well preserved. A detailed interpretation of the 3D seismic data reveals the absence of significant (> 3 m) basal erosion in the distal extent of submarine pyroclastic deposits. We also identify a previously unrecognized seismic unit directly beneath the stack of recent lobes. We propose three hypotheses for the origin of this seismic unit, but prefer an interpretation that the deposit is the result of the subaerial flank collapse that formed the English's Crater scarp on the Soufrière Hills volcano. The 1995–recent volcanic activity on Montserrat accounts for a significant portion of the sediments on the southeast slope of Montserrat, in places forming deposits that are more than 60 m thick, which implies that the potential for pyroclastic flows to build volcanic island edifices is significant