23 research outputs found

    Twistors and Black Holes

    Full text link
    Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function (in the supergravity approximation) for BPS black holes with fixed electric and magnetic charges.Comment: 47 pages, v2: typos corrected, reference added, v3: minor change

    The geochemistry of modern calcareous barnacle shells and applications for palaeoenvironmental studies

    Get PDF
    Thoracican barnacles of the Superorder Thoracicalcarea Gale, 2016 are sessile calcifiers which are ubiquitous in the intertidal zone and present from very shallow to the deepest marine environments; they also live as epiplankton on animals and detritus. The geochemical composition of their shell calcite has been shown to yield information about environmental conditions, but comprehensive analyses of barnacle shell geochemistry are so far lacking. Here, a dataset is reported for Mg/Ca, Sr/Ca, Mn/Ca, Fe/Ca, as well as carbon and oxygen isotope ratios for 42 species from the Balaniformes, Verruciformes, Scalpelliformes and Lepadiformes. Barnacles predominantly form low-Mg-calcite with very high Sr/Ca ratios averaging 4.2 mmol/mol. The Mn/Ca and Fe/Ca ratios in shell plates are variable and can exceed > 4mmol/mol in barnacles that are attached to manmade structures or live close to (anthropogenic) sources of Mn and Fe. No strong phylogenetic control on the average element/Ca ratios is observed in barnacles. The Balaniformes show a ca. 40 % enrichment of Mg in their scuta and terga as compared to other shell plates — a pattern which is not seen in other barnacles. The combination of low to medium Mg/Ca ratios and high Sr/Ca ratios is rare for marine biogenic calcite and Barnacles may thus become important for robustly reconstructing past seawater composition, if this signature is also present in fossil barnacle calcite and can be used alongside other fossil taxa with different Sr incorporation behaviour. Carbon and oxygen isotope data support the view that the oxygen isotope thermometer for barnacles is robust and that most barnacle species form their calcite in, or near, isotopic equilibrium with ambient water. The Lepadiformes, however, show a tendency for strong co-variation of δ13C with δ18O values and depletion in 13C and 18O which is attributed to isotopic disequilibrium during shell secretion. Strong systematic fluctuations in Mg/Ca ratios over length scales of ca. 5 to 15 µm are exhibited by the scalpelliform species Capitulum mitella, the only studied species which consistently forms high-Mg-calcite, and are tentatively linked to tidal control on the shell secretion pattern. Cathodoluminescence images for this species suggest that additionally a seasonal pattern of Mn distribution in its shell plates is recorded, pointing to a potential use for reconstruction of seasonal changes in terrestrial element supply

    Correlation of Eocene-Oligocene marine and continental records: orbital cyclicity, magnetostratigraphy and sequence stratigraphy of the Solent Group, Isle of Wight, UK

    No full text
    The magnetostratigraphy, clay mineralogy, cyclostratigraphy and sequence stratigraphy of the estuarine and continental Solent Group (Isle of Wight, Hampshire Basin, UK), which is of Late Eocene–Early Oligocene age, were investigated. A new magnetostratigraphy for the Solent Group is correlated to the chronostratigraphic standard using limited biostratigraphical data, and it is concluded that the base of the Oligocene falls close to the base of the Bembridge Limestone Formation. A long time-series of clay mineral XRD data was generated, which shows striking variation in illitic clay abundance. Illite is interpreted to have formed in gley palaeosols through repeated wetting and drying in response to high seasonality. High illitic clay values are tuned to c. 400 ka eccentricity maxima to develop an age model. In addition to a very strong c. 400 ka signal in the data, spectral analysis of the clay data also confirms the influence of short eccentricity (c. 100 ka) and obliquity (c. 40 ka) cycles. The succession displays seven conspicuous 10–20 m thick sequences, which represent transitions from transgressive estuarine environments through highstand floodplains to freshwater lakes. The sequences correspond exactly to the long eccentricity (c. 400 ka) cycles. A sea-level curve is derived using the amount of incision as a minimum measure of eustatic fall, but there is no evidence of a major eustatic drop of 30–90 m corresponding to the early Oligocene glaciation of Antarctica. It is likely that incision was suppressed by rapid rates of subsidence

    Serpentine-nontronite-vermiculate mixed-layer clay from the Weches Formation, Claiborne Group, middle Eocene, Northeast Texas

    No full text
    The Weches Formation of the Claiborne Group (Eocene) in northeast Texas consists of clayey sandstones and mudrocks, both with variable proportions of dark green to brown clay peloids deposited in a marginal to open marine setting on the Gulf Coast margin. The composition of the dark green peloids, from two localities, has been investigated using X-ray diffraction, back-scattered electron microscopy with X-ray analysis, electron energy-loss spectroscopy (EELS), Mössbauer spectroscopy, chemical analysis and Fourier transform infrared spectroscopy. These peloids were previously described on the basis of their color as glauconite (Yancey and Davidoff, 1994); our results, however, show that the dark green indurated pellets are predominantly composed of mixed-layer clays with a high proportion of Fe-rich 7 Å serpentine layers coexisting with a mixed-layer phase containing glauconite, nontronite and vermiculite layers, in addition to discrete illite and kaolinte. Analyses by EELS of single particles with a chemical composition consistent with them being the Fe-rich clay indicate that the Fe is >95% ferric, while Mössbauer analyses of the bulk magnetically separated fraction for the same samples indicates a ferric iron content of ∼60-70%, despite the variable relative proportions of expandable and 7 Å layers. Taking into account that there is a significant amount of 2:1 layers containing ferric Fe, we interpret these data as indicating that the Fe in the 7 Å layers has a significant amount of Fe even taking into account the high ferric Fe ratio from the EELS analysis when the coexisting 2:1 layers are considered. Thus, these 1:1 layers are closer to berthierine in composition than to odinite. The vermiculite layers in the Texas clay may indicate partial 'verdinization' of expandable 2:1 clay. A possible reaction is smectite → vermiculite → berthierine-like phase. We estimate a temperature of 20°C for the seawater in which the Texas clay formed, the lower end of the range for modern occurrences of odinite

    Serpentine-nontronite-vermiculate mixed-layer clay from the Weches Formation, Claiborne Group, middle Eocene, Northeast Texas

    No full text
    The Weches Formation of the Claiborne Group (Eocene) in northeast Texas consists of clayey sandstones and mudrocks, both with variable proportions of dark green to brown clay peloids deposited in a marginal to open marine setting on the Gulf Coast margin. The composition of the dark green peloids, from two localities, has been investigated using X-ray diffraction, back-scattered electron microscopy with X-ray analysis, electron energy-loss spectroscopy (EELS), Mössbauer spectroscopy, chemical analysis and Fourier transform infrared spectroscopy. These peloids were previously described on the basis of their color as glauconite (Yancey and Davidoff, 1994); our results, however, show that the dark green indurated pellets are predominantly composed of mixed-layer clays with a high proportion of Fe-rich 7 Å serpentine layers coexisting with a mixed-layer phase containing glauconite, nontronite and vermiculite layers, in addition to discrete illite and kaolinte. Analyses by EELS of single particles with a chemical composition consistent with them being the Fe-rich clay indicate that the Fe is >95% ferric, while Mössbauer analyses of the bulk magnetically separated fraction for the same samples indicates a ferric iron content of ∼60-70%, despite the variable relative proportions of expandable and 7 Å layers. Taking into account that there is a significant amount of 2:1 layers containing ferric Fe, we interpret these data as indicating that the Fe in the 7 Å layers has a significant amount of Fe even taking into account the high ferric Fe ratio from the EELS analysis when the coexisting 2:1 layers are considered. Thus, these 1:1 layers are closer to berthierine in composition than to odinite. The vermiculite layers in the Texas clay may indicate partial 'verdinization' of expandable 2:1 clay. A possible reaction is smectite → vermiculite → berthierine-like phase. We estimate a temperature of 20°C for the seawater in which the Texas clay formed, the lower end of the range for modern occurrences of odinite
    corecore