447 research outputs found

    The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    Get PDF
    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to Ap

    Enabling real-time multi-messenger astrophysics discoveries with deep learning

    Get PDF
    Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and the need to build a community of experts to realize the goals of multi-messenger astrophysics

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    PRMT4-Mediated Arginine Methylation Negatively Regulates Retinoblastoma Tumor Suppressor Protein and Promotes E2F-1 Dissociation

    No full text
    The retinoblastoma protein (pRb/p105) tumor suppressor plays a pivotal role in cell cycle regulation by blockage of the G1-to-S-phase transition. pRb tumor suppressor activity is governed by a variety of posttranslational modifications, most notably phosphorylation by cyclin-dependent kinase (Cdk) complexes. Here we report a novel regulation of pRb through protein arginine methyltransferase 4 (PRMT4)-mediated arginine methylation, which parallels phosphorylation. PRMT4 specifically methylates pRb at the pRb C-terminal domain (pRb C(term)) on arginine (R) residues R775, R787, and R798 in vitro and R787 in vivo. Arginine methylation is important for efficient pRb C(term) phosphorylation, as manifested by the reduced phosphorylation of a methylation-impaired mutant, pRb (R3K). A methylmimetic form of pRb, pRb (R3F), disrupts the formation of the E2F-1/DP1-pRb complex in cells as well as in an isolated system. Finally, studies using a Gal4-E2F-1 reporter system show that pRb (R3F) expression reduces the ability of pRb to repress E2F-1 transcriptional activation, while pRb (R3K) expression further represses E2F-1 transcriptional activation relative to that for cells expressing wild-type pRb. Together, our results suggest that arginine methylation negatively regulates the tumor suppressor function of pRb during cell cycle control, in part by creating a better substrate for Cdk complex phosphorylation and disrupting the interaction of pRb with E2F-1

    PRMT4-Mediated Arginine Methylation Negatively Regulates Retinoblastoma Tumor Suppressor Protein and Promotes E2F-1 Dissociation

    No full text
    The retinoblastoma protein (pRb/p105) tumor suppressor plays a pivotal role in cell cycle regulation by blockage of the G(1)-to-S-phase transition. pRb tumor suppressor activity is governed by a variety of posttranslational modifications, most notably phosphorylation by cyclin-dependent kinase (Cdk) complexes. Here we report a novel regulation of pRb through protein arginine methyltransferase 4 (PRMT4)-mediated arginine methylation, which parallels phosphorylation. PRMT4 specifically methylates pRb at the pRb C-terminal domain (pRb C(term)) on arginine (R) residues R775, R787, and R798 in vitro and R787 in vivo. Arginine methylation is important for efficient pRb C(term) phosphorylation, as manifested by the reduced phosphorylation of a methylation-impaired mutant, pRb (R3K). A methylmimetic form of pRb, pRb (R3F), disrupts the formation of the E2F-1/DP1-pRb complex in cells as well as in an isolated system. Finally, studies using a Gal4–E2F-1 reporter system show that pRb (R3F) expression reduces the ability of pRb to repress E2F-1 transcriptional activation, while pRb (R3K) expression further represses E2F-1 transcriptional activation relative to that for cells expressing wild-type pRb. Together, our results suggest that arginine methylation negatively regulates the tumor suppressor function of pRb during cell cycle control, in part by creating a better substrate for Cdk complex phosphorylation and disrupting the interaction of pRb with E2F-1
    corecore