3,256 research outputs found

    The Spatial String Tension and Dimensional Reduction in QCD

    Full text link
    We calculate the spatial string tension in (2+1) flavor QCD with physical strange quark mass and almost physical light quark masses using lattices with temporal extent N_tau=4,6 and 8. We compare our results on the spatial string tension with predictions of dimensionally reduced QCD. This suggests that also in the presence of light dynamical quarks dimensional reduction works well down to temperatures 1.5T_c.Comment: 8 pages ReVTeX, 4 figure

    Equation of state and QCD transition at finite temperature

    Full text link
    We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nt=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a^2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nt=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an Appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we also incorporated an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects. We estimate these systematic effects to be about 10 MeVComment: 31 pages, 24 EPS-figure

    Transportation Beyond 2000: Technologies Needed for Engineering Design

    Get PDF
    The purpose of the workshop was to acquaint the staff of the NASA Langley Research Center with the broad spectrum of transportation challenges and concepts foreseen within the next 20 years. The hope is that the material presented at the workshop and contained in this document will stimulate innovative high-payoff research directed towards the efficiency of future transportation systems. The workshop included five sessions designed to stress the factors that will lead to a revolution in the way we will travel in the 21st century. The first session provides the historical background and a general perspective for future transportation, including emerging transportation alternatives such as working at a distance. Personal travel is the subject of Session Two. The third session looks at mass transportation, including advanced rail vehicles, advanced commuter aircraft, and advanced transport aircraft. The fourth session addresses some of the technologies required for the above revolutionary transportation systems to evolve. The workshop concluded with a wrap-up panel discussion, Session Five. The topics presented herein all have viable technical components and are at a stage in their development that, with sufficient engineering research, one or more of these could make a significant impact on transportation and our social structure

    Projected loss of soil organic carbon in temperate agricultural soils in the 21<sup>st</sup>century: effects of climate change and carbon input trends

    Get PDF
    Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21st century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11–16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19–24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3–8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils

    The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis

    Get PDF
    Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, “hyper-pluripotent” state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency

    Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234

    Get PDF
    We present the analysis of a total of 177h of high-quality optical time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC 20058-5234. The bulk of the observations (135h) were obtained during a WET campaign (XCOV15) in July 1997 that featured coordinated observing from 4 southern observatory sites over an 8-day period. The remaining data (42h) were obtained in June 2004 at Mt John Observatory in NZ over a one-week observing period. This work significantly extends the discovery observations of this low-amplitude (few percent) pulsator by increasing the number of detected frequencies from 8 to 18, and employs a simulation procedure to confirm the reality of these frequencies to a high level of significance (1 in 1000). The nature of the observed pulsation spectrum precludes identification of unique pulsation mode properties using any clearly discernable trends. However, we have used a global modelling procedure employing genetic algorithm techniques to identify the n, l values of 8 pulsation modes, and thereby obtain asteroseismic measurements of several model parameters, including the stellar mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We also present persuasive evidence from apparent rotational mode splitting for two of the modes that indicates this compact object is a relatively rapid rotator with a period of 2h. In direct analogy with the corresponding properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude pulsation behaviour of EC 20058 is entirely consistent with its inferred effective temperature, which indicates it is close to the blue edge of the DBV instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte

    Spin relaxation of localized electrons in n-type semiconductors

    Full text link
    The mechanisms that determine spin relaxation times of localized electrons in impurity bands of n-type semiconductors are considered theoretically and compared with available experimental data. The relaxation time of the non-equilibrium angular momentum is shown to be limited either by hyperfine interaction, or by spin-orbit interaction in course of exchange-induced spin diffusion. The energy relaxation time in the spin system is governed by phonon-assisted hops within pairs of donors with an optimal distance of about 4 Bohr radii. The spin correlation time of the donor-bound electron is determined either by exchange interaction with other localized electrons, or by spin-flip scattering of free conduction-band electrons. A possibility of optical cooling of the spin system of localized electrons is discussed.Comment: Submitted to the special issue "Optical Orientation", Semiconductor Science and Technolog

    Synergistic Airframe-Propulsion Interactions and Integrations: A White Paper Prepared by the 1996-1997 Langley Aeronautics Technical Committee

    Get PDF
    This white paper addresses the subject of Synergistic Airframe-Propulsion interactions and integrations (SnAPII). The benefits of SnAPII have not been as extensively explored. This is due primarily to the separateness of design process for airframes and propulsion systems, with only unfavorable interactions addressed. The question 'How to design these two systems in such a way that the airframe needs the propulsion and the propulsion needs the airframe?' is the fundamental issue addressed in this paper. Successful solutions to this issue depend on appropriate technology ideas. This paper first details some ten technologies that have yet to make it to commercial products (with limited exceptions) and that could be utilized in a synergistic manner. Then these technologies, either alone or in combination, are applied to both a conventional twin-engine transonic transport and to an unconventional transport, the Blended Wing Body. Lastly, combinations of these technologies are applied to configuration concepts to assess the possibilities of success relative to five of the ten NASA aeronautics goals. These assessments are subjective, but they point the way in which the applied technologies could work together for some break-through benefits
    • …
    corecore