281 research outputs found

    Predicting Phosphorus Requirements of Some Hawaii Soils

    Get PDF
    Graphs allow estimation of available phosphorus in some Hawaii soils representative of different P-fixation types. Levels of P in plant tissues associated with near-maximum yields are given for some common crops

    An investigation into the depth and time dependent behavior of UV cured 3D ink jet printed objects

    Get PDF
    An ultra-violet (UV) curable ink jet 3D printed material was characterized by an inverse finite element modeling (IFEM) technique employing a nonlinear viscoelastic–viscoplastic (NVEVP) material constitutive model; this methodology was compared directly with nanoindentation tests. The printed UV cured ink jet material properties were found to be z-depth dependent owing to the sequential layer-by-layer deposition approach. With further post-UV curing, the z-depth dependence was weakened but properties at all depths were influenced by the duration of UV exposure, indicating that none of the materials within the samples had reached full cure during the 3D printing process. Effects due to the proximity of an indentation to the 3D printed material material-sample fixing interface, and the different mounting material, in a test sample were examined by direct 3D finite element simulation and shown to be insignificant for experiments performed at a distance greater than 20 lm from the interface

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    A Direct Comparison of Two Densely Sampled HIV Epidemics: The UK and Switzerland

    Get PDF
    Phylogenetic clustering approaches can elucidate HIV transmission dynamics. Comparisons across countries are essential for evaluating public health policies. Here, we used a standardised approach to compare the UK HIV Drug Resistance Database and the Swiss HIV Cohort Study while maintaining data-protection requirements. Clusters were identified in subtype A1, B and C pol phylogenies. We generated degree distributions for each risk group and compared distributions between countries using Kolmogorov-Smirnov (KS) tests, Degree Distribution Quantification and Comparison (DDQC) and bootstrapping. We used logistic regression to predict cluster membership based on country, sampling date, risk group, ethnicity and sex. We analysed >8,000 Swiss and >30,000 UK subtype B sequences. At 4.5% genetic distance, the UK was more clustered and MSM and heterosexual degree distributions differed significantly by the KS test. The KS test is sensitive to variation in network scale, and jackknifing the UK MSM dataset to the size of the Swiss dataset removed the difference. Only heterosexuals varied based on the DDQC, due to UK male heterosexuals who clustered exclusively with MSM. Their removal eliminated this difference. In conclusion, the UK and Swiss HIV epidemics have similar underlying dynamics and observed differences in clustering are mainly due to different population sizes

    A complex hepatitis B virus (X/C) recombinant is common in Long An county, Guangxi and may have originated in southern China

    Get PDF
    Recently, a complex (X/C) hepatitis B virus (HBV) recombinant, first reported in 2000, was proposed as a new genotype; although this was refuted immediately because the strains differ by less than 8 % in nucleotide distance from genotype C. Over 13.5 % (38/281) of HBV isolates from the Long An cohort in China were not assigned to a specific genotype, using current genotyping tools to analyse surface ORF sequences, and these have about 98 % similarity to the X/C recombinants. To determine whether this close identity extends to the full-length sequences and to investigate the evolutionary history of the Long An X/C recombinants, 17 complete genome sequences were determined. They are highly similar (96–99 %) to the Vietnamese strains and, although some reach or exceed 8 % nucleotide sequence difference from all known genotypes, they cluster together in the same clade, separating in a phylogenetic tree from the genotype C branch. Analysis of recombination reveals that all but one of the Long An isolates resembles the Vietnamese isolates in that they result from apparent recombination between genotype C and a parent of unknown genotype (X), which shows similarity in part to genotype G. The exception, isolate QL523, has a greater proportion of genotype C parent. Phylogeographic analysis reveals that these recombinants probably arose in southern China and spread later to Vietnam and Laos

    Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses

    Get PDF
    In 2009, a newly discovered human retrovirus, xenotropic murine leukemia virus (MuLV)-related virus (XMRV), was reported by Lombardi et al. in 67% of persons from the US with chronic fatigue syndrome (CFS) by PCR detection of gag sequences. Although six subsequent studies have been negative for XMRV, CFS was defined more broadly using only the CDC or Oxford criteria and samples from the US were limited in geographic diversity, both potentially reducing the chances of identifying XMRV positive CFS cases. A seventh study recently found polytropic MuLV sequences, but not XMRV, in a high proportion of persons with CFS. Here we tested blood specimens from 45 CFS cases and 42 persons without CFS from over 20 states in the United States for both XMRV and MuLV. The CFS patients all had a minimum of 6 months of post-exertional malaise and a high degree of disability, the same key symptoms described in the Lombardi et al. study. Using highly sensitive and generic DNA and RNA PCR tests, and a new Western blot assay employing purified whole XMRV as antigen, we found no evidence of XMRV or MuLV in all 45 CFS cases and in the 42 persons without CFS. Our findings, together with previous negative reports, do not suggest an association of XMRV or MuLV in the majority of CFS cases

    Gamma-Ray Astronomy with ARGO-YBJ

    Get PDF
    ARGO-YBJ is a full coverage air shower array located at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2) recording data with a duty cycle 85% and an energy threshold of a few hundred GeV. In this paper the latest results in Gamma-Ray Astronomy are summarized

    Cosmic ray physics with the ARGO-YBJ experiment

    Get PDF
    The main scientific goals of the ARGO-YBJ experiment are ray astronomy with a few hundreds GeV energy threshold and cosmic ray physics below and around the knee of the primary energy spectrum (10**12−10**16 eV), where the transition from direct to indirect measurement techniques takes place. The ARGO-YBJ experiment, located at the Cosmic Ray Observatory of Yangbajing (Tibet, P.R. of China, 4 300 m a.s.l.), is an unconventional Extensive Air Shower array of about 6,700 m2 of active area, the only one exploiting the full-coverage technique at very high altitude currently in operation. The detector space-time granularity, performance and location offer a unique chance to make a detailed study of the structure of cosmic ray showers, in particular of the hadronic component. In this work we will focus on the main experimental results concerning cosmic ray and hadronic interaction physics: primary cosmic ray energy spectrum, antiproton over proton ratio, anisotropy in the cosmic ray flux and proton-air cross-section. Moreover, the possible data analysis improvements based on the use of all detailed information on the shower front (curvature, time width, rise time and so on), as well as the extension of the investigable energy range, allowed by the analog RPC readout, will be pointed out

    Uncoupled Embryonic and Extra-Embryonic Tissues Compromise Blastocyst Development after Somatic Cell Nuclear Transfer

    Get PDF
    Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way
    corecore