20 research outputs found

    Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    Get PDF
    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague–Dawley rats, a standardized 5.0 mm circular defect was created in the left mandibular angle. New bone formation was demonstrated by post mortem micro-radiography, micro-computed tomography imaging and histological analysis. Four groups (control, PTMC, collagen, e-PTFE) were evaluated at three time intervals (2, 4 and 12 weeks). In the membrane groups the defects were covered; in the control group the defects were left uncovered. Data were analysed using a multiple regression model. In contrast to uncovered mandibular defects, substantial bone healing was observed in defects covered with a barrier membrane. In the latter case, the formation of bone was progressive over 12 weeks. No statistically significant differences between the amount of new bone formed under the PTMC membranes and the amount of bone formed under the collagen and e-PTFE membranes were observed. Therefore, it can be concluded that PTMC membranes are well suited for use in guided bone regeneration

    The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions

    No full text
    The physics of remote sensing sea surface measurements is still poorly understood under severe weather conditions. Wind vector algorithms are usually developed for non-precipitating atmospheres and for wind speeds less than 20 m/s. In this study, we analyze observations from the QuikSCAT Ku-band scatterometer collocated with the WindSat full polarimetric microwave radiometer to estimate the potential of these two instruments for sea surface wind retrieval under severe weather conditions. The Jason altimeter provides independent measurements of wind speed and rain rate for comparison purposes. The sensitivity of the radar cross-sections and brightness temperatures to the wind speed and direction is directly studied from the observations and compared with semi empirical models. This study clearly demonstrates that wind vector retrieval under extreme condition is feasible. Comparisons between QuikSCAT and WindSat coincident observations evidence a better sensitivity of the active mode to low and moderate winds and more sensitivity to high wind speeds in the passive mode. Although the WindSat observations are affected by water vapor, cloud, and rain, especially at and above 18 GHz, the measurements are sensitive to wind speed even at high wind speeds. Contrarily to the active instrument, there is no saturation at high winds. The sensitivity clearly tends to increase for winds above 15 m/s. For the wind direction, the amplitude of the azimuthal modulation in the active mode decreases with increasing wind speed, while it increases for the passive measurements. The development of specific wind retrievals under severe weather conditions is encouraged and a simple illustration is provided
    corecore