149 research outputs found

    Knockout mice: Is it just genetics? Effect of enriched housing on fibulin-4+/- mice

    Get PDF
    Background. Fibulin-4 is an extracellular matrix protein expressed by vascular smooth muscle cells that is essential for maintaining arterial integrity. Fibulin-4-/- mice die just before birth due to arterial hemorrhage, but fibulin-4+/- mice appear to be outwardly normal. Experiments were therefore performed to determine whether fibulin-4+/- mice display arterial pathologies on a microscopic scale. After preliminary experiments were performed, a second purpose developed, which was to test the hypothesis that any observed pathologies would be ameliorated by housing the animals in enriched cages. Methodology. Fibulin-4+/- and wild-type mice were housed either four/cage in standard cages or two per cage in larger cages, each cage containing a tunnel and a wheel. After three weeks the mice were sacrificed, and the aortas perfusion-fixed and excised for light and electron microscopy. Principle Findings. When the mice were in standard cages, localized regions of disorganized extracellular matrix and collagen fibers consistently appeared between some of the medial smooth muscle cells in the fibulin-4+/- mice. In the wild-type mice, the smooth muscle cells were closely connected to each other and the media was more compact. The number of disorganized regions per square mm was significantly greater for fibulin-4+/- mice (172±43 (SEM)) than for wild-type mice (15±8) (p<0.01, n = 8). When the mice were in enriched cages, the fibulin-4+/- mice showed significantly fewer disorganized regions than those in standard cages (35±12) (p<0.05, n = 8). The wild type mice also showed fewer disorganized regions (3±2), but this difference was not significant. Conclusions. These results indicate that arterial pathologies manifested in fibulin-4+/- mice can be reduced by enriching the housing conditions, and imply that appropriate environments may counteract the effects of some genetic deficiencies

    Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression

    Get PDF
    Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous inborn errors of metabolism. At present, treatment is available for only one CDG, but potential treatments for the other CDG are on the horizon. It will be vitally important in clinical trials of such agents to have a clear understanding of both the natural history of CDG and the corresponding burden of disability suffered by patients. To date, no multicentre studies have attempted to document the natural history of CDG. This is in part due to the lack of a reliable assessment tool to score CDG’s diverse clinical spectrum. Based on our earlier experience evaluating disease progression in disorders of oxidative phosphorylation, we developed a practical and semi-quantitative rating scale for children with CDG. The Nijmegen Paediatric CDG Rating Scale (NPCRS) has been validated in 12 children, offering a tool to objectively monitor disease progression. We undertook a successful trial of the NPCRS with a collaboration of nine experienced physicians, using video records of physical and neurological examination of patients. The use of NPCRS can facilitate both longitudinal and natural history studies that will be essential for future interventions

    Metabolic cutis laxa syndromes

    Get PDF
    Cutis laxa is a rare skin disorder characterized by wrinkled, redundant, inelastic and sagging skin due to defective synthesis of elastic fibers and other proteins of the extracellular matrix. Wrinkled, inelastic skin occurs in many cases as an acquired condition. Syndromic forms of cutis laxa, however, are caused by diverse genetic defects, mostly coding for structural extracellular matrix proteins. Surprisingly a number of metabolic disorders have been also found to be associated with inherited cutis laxa. Menkes disease was the first metabolic disease reported with old-looking, wrinkled skin. Cutis laxa has recently been found in patients with abnormal glycosylation. The discovery of the COG7 defect in patients with wrinkled, inelastic skin was the first genetic link with the Congenital Disorders of Glycosylation (CDG). Since then several inborn errors of metabolism with cutis laxa have been described with variable severity. These include P5CS, ATP6V0A2-CDG and PYCR1 defects. In spite of the evolving number of cutis laxa-related diseases a large part of the cases remain genetically unsolved. In metabolic cutis laxa syndromes the clinical and laboratory features might partially overlap, however there are some distinct, discriminative features. In this review on metabolic diseases causing cutis laxa we offer a practical approach for the differential diagnosis of metabolic cutis laxa syndromes

    Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    Get PDF
    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of the renin-angiotensin system to the preventive treatment of aneurysm disease

    Pathogenic germline variants in 10,389 adult cancers

    Get PDF
    We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer

    BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription

    Get PDF
    Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.This article is available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site.Wellcome Trust (grant number WT098051)Published (open access

    Pathogenic Germline Variants in 10,389 Adult Cancers

    Get PDF
    We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer. A pan-cancer analysis identifies hundreds of predisposing germline variants
    • …
    corecore