211 research outputs found

    Single-stage, single-phase, ac–dc buck–boost converter for low-voltage applications

    Get PDF
    The suitability of a single-stage ac–dc buck–boost converter for low-voltage applications is investigated. In-depth discussion and analysis of the converter's operating principle, basic relationships that govern converter steady-state operation and details of the necessary control structures needed to comply with the grid code are provided. The validity of the proposed system is confirmed using power system computer aided design (PSCAD)/electromagnetic transients including DC (EMTDC) simulations, and is substantiated experimentally. The buck–boost converter under investigation has good dynamic performance in both buck and boost modes, and ensures near unity input power factor over the full operating range, whilst having fewer devices and passive elements than other published versions of the buck–boost converter

    First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments

    Full text link
    We compare the physics potential of the upcoming neutrino oscillation experiments Daya Bay, Double Chooz, NOvA, RENO, and T2K based on their anticipated nominal luminosities and schedules. After discussing the sensitivity to theta_{13} and the leading atmospheric parameters, we demonstrate that leptonic CP violation will hardly be measurable without upgrades of the T2K and NOvA proton drivers, even if theta_{13} is large. In the presence of the proton drivers, the fast track to hints for CP violation requires communication between the T2K and NOvA collaborations in terms of a mutual synchronization of their neutrino-antineutrino run plans. Even in that case, upgrades will only discover CP violation in a relatively small part of the parameter space at the 3 sigma confidence level, while 90% confidence level hints will most likely be obtained. Therefore, we conclude that a new facility will be required if the goal is to obtain a significant result with high probability.Comment: 27 pages, 12 figure

    Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism

    Get PDF
    Large igneous province volcanic activity during the mid-Cretaceous approximately 94.5 million years ago triggered a global-scale episode of reduced marine oxygen levels known as Oceanic Anoxic Event 2. It has been hypothesized that this geologically rapid degassing of volcanic carbon dioxide altered seawater carbonate chemistry, affecting marine ecosystems, geochemical cycles, and sedimentation. Here, we report on two sites drilled by the International Ocean Discovery Program offshore of southwest Australia that exhibit clear evidence for suppressed pelagic carbonate sedimentation in the form of a stratigraphic interval barren of carbonate, recording ocean acidification during the event. We then use the osmium isotopic composition of bulk sediments to directly link this protracted ~600- kiloyear shoaling of the marine calcite compensation depth to the onset of volcanic activity. This decrease in marine pH was prolonged by biogeochemical feedbacks in highly productive regions that elevated heterotrophic respiration of carbon dioxide to the water column. A compilation of mid- Cretaceous marine stratigraphic records reveals a contemporaneous decrease of sedimentary carbonate content at continental slope sites globally. Thus, we contend that changes in marine carbonate chemistry are a primary ecological stress and important consequence of rapid emission of carbon dioxide during many large igneous province eruptions in the geologic past

    Pforams@microtax : Anew online taxonomic database for planktonic foraminifera

    Get PDF
    A new relational taxonomic database for planktonic foraminifera (\u201cpforams@mikrotax\u201d) has been constructed and is now freely available online at http://www.mikrotax.org. It represents amajor advance from its predecessor, the CHRONOS online taxonomic database, which has served the research community since 2005. The benefits of the new database to the research and industrial biostratigraphic communities are many, as it will serve as an immediately accessible taxonomic guide and reference for specialists and non-specialists alike by providing access to a wealth of information and images from original authors and from expertswho have inserted recent authoritative updates to planktonic foraminiferal taxonomy, phylogeny and biostratigraphy. The database will be continually updated and used as a guide for training current and future generations of students and professionals who will be able to self-educate on planktonic foraminiferal taxonomy and biostratigraphy. Further investigation of species traditionally included in the Cretaceous genera Heterohelix, Globigerinelloides, Marginotruncana, and Globotruncana is required to exclude the use of polyphyletic morphotaxa. The taxonomy for Paleogene planktonic foraminifera is quite stable following publication of the Paleocene, Eocene, and Oligocene taxonomic atlases, but revisions to the taxonomy and phylogeny of Neogene taxa are needed to incorporate results from genetic sequencing studies and recent biostratigraphic observations

    Optimized Two-Baseline Beta-Beam Experiment

    Get PDF
    We propose a realistic Beta-Beam experiment with four source ions and two baselines for the best possible sensitivity to theta_{13}, CP violation and mass hierarchy. Neutrinos from 18Ne and 6He with Lorentz boost gamma=350 are detected in a 500 kton water Cerenkov detector at a distance L=650 km (first oscillation peak) from the source. Neutrinos from 8B and 8Li are detected in a 50 kton magnetized iron detector at a distance L=7000 km (magic baseline) from the source. Since the decay ring requires a tilt angle of 34.5 degrees to send the beam to the magic baseline, the far end of the ring has a maximum depth of d=2132 m for magnetic field strength of 8.3 T, if one demands that the fraction of ions that decay along the straight sections of the racetrack geometry decay ring (called livetime) is 0.3. We alleviate this problem by proposing to trade reduction of the livetime of the decay ring with the increase in the boost factor of the ions, such that the number of events at the detector remains almost the same. This allows to substantially reduce the maximum depth of the decay ring at the far end, without significantly compromising the sensitivity of the experiment to the oscillation parameters. We take 8B and 8Li with gamma=390 and 656 respectively, as these are the largest possible boost factors possible with the envisaged upgrades of the SPS at CERN. This allows us to reduce d of the decay ring by a factor of 1.7 for 8.3 T magnetic field. Increase of magnetic field to 15 T would further reduce d to 738 m only. We study the sensitivity reach of this two baseline two storage ring Beta-Beam experiment, and compare it with the corresponding reach of the other proposed facilities.Comment: 17 pages, 3 eps figures. Minor changes, matches version accepted in JHE

    Precision Neutrino Oscillation Physics with an Intermediate Baseline Reactor Neutrino Experiment

    Full text link
    We discuss the physics potential of intermediate L20÷30L \sim 20 \div 30 km baseline experiments at reactor facilities, assuming that the solar neutrino oscillation parameters Δm2\Delta m^2_{\odot} and θ\theta_{\odot} lie in the high-LMA solution region. We show that such an intermediate baseline reactor experiment can determine both Δm2\Delta m^2_{\odot} and θ\theta_{\odot} with a remarkably high precision. We perform also a detailed study of the sensitivity of the indicated experiment to Δmatm2\Delta m^2_{\rm atm}, which drives the dominant atmospheric νμ\nu_{\mu} (νˉμ\bar{\nu}_{\mu}) oscillations, and to θ\theta - the neutrino mixing angle limited by the data from the CHOOZ and Palo Verde experiments. We find that this experiment can improve the bounds on sin2θ\sin^2\theta. If the value of sin2θ\sin^2\theta is large enough, \sin^2\theta \gtap 0.02, the energy resolution of the detector is sufficiently good and if the statistics is relatively high, it can determine with extremely high precision the value of Δmatm2\Delta m^2_{\rm atm}. We also explore the potential of the intermediate baseline reactor neutrino experiment for determining the type of the neutrino mass spectrum, which can be with normal or inverted hierarchy. We show that the conditions under which the type of neutrino mass hierarchy can be determined are quite challenging, but are within the reach of the experiment under discussion.Comment: 25 page

    Олесь Бабій - співець слави січових стрільців

    Get PDF
    The Salamanca Formation of the San Jorge Basin (Patagonia, Argentina) preserves critical records of Southern Hemisphere Paleocene biotas, but its age remains poorly resolved, with estimates ranging from Late Cretaceous to middle Paleocene. We report a multi-disciplinary geochronologic study of the Salamanca Formation and overlying Río Chico Group in the western part of the basin. New constraints include (1) an 40Ar/39Ar age determination of 67.31 ± 0.55 Ma from a basalt flow underlying the Salamanca Formation, (2) micropaleontological results indicating an early Danian age for the base of the Salamanca Formation, (3) laser ablation HR-MC-ICP-MS (high resolution-multi collector-inductively coupled plasma-mass spectrometry) U-Pb ages and a high-resolution TIMS (thermal ionization mass spectrometry) age of 61.984 ± 0.041(0.074)[0.100] Ma for zircons from volcanic ash beds in the Peñas Coloradas Formation (Río Chico Group), and (4) paleomagnetic results indicating that the Salamanca Formation in this area is entirely of normal polarity, with reversals occurring in the Río Chico Group. Placing these new age constraints in the context of a sequence stratigraphic model for the basin, we correlate the Salamanca Formation in the study area to Chrons C29n and C28n, with the Banco Negro Inferior (BNI), a mature widespread fossiliferous paleosol unit at the top of the Salamanca Formation, corresponding to the top of Chron C28n. The diverse paleobotanical assemblages from this area are here assigned to C28n (64.67–63.49 Ma), ∼2–3 million years older than previously thought, adding to growing evidence for rapid Southern Hemisphere floral recovery after the Cretaceous-Paleogene extinction. Important Peligran and “Carodnia” zone vertebrate fossil assemblages from coastal BNI and Peñas Coloradas exposures are likely older than previously thought and correlate to the early Torrejonian and early Tiffanian North American Land Mammal Ages, respectively

    Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector

    Full text link
    I attempt to quantify how far from maximal one should expect the atmospheric mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done by assuming that the solar mass-squared difference is induced by an "anarchical" first order perturbation, an approach than can naturally lead to experimentally allowed values for all oscillation parameters. In particular, both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in the case of an inverted one. Hence, if any of the textures analyzed here has anything to do with reality, next-generation neutrino experiments can see a nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the case of an inverted mass-hierarchy only neutrino factories should be able to see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde

    Tests of CPT Invariance at Neutrino Factories

    Full text link
    We investigate possible tests of CPT invariance on the level of event rates at neutrino factories. We do not assume any specific model but phenomenological differences in the neutrino-antineutrino masses and mixing angles in a Lorentz invariance preserving context, such as it could be induced by physics beyond the Standard Model. We especially focus on the muon neutrino and antineutrino disappearance channels in order to obtain constraints on the neutrino-antineutrino mass and mixing angle differences; we found, for example, that the sensitivity m3mˉ31.9104eV|m_3 - \bar{m}_3| \lesssim 1.9 \cdot 10^{-4} \mathrm{eV} could be achieved.Comment: 6 pages, 1 figure, RevTeX4. Final version to be published in Phys. Rev.
    corecore