118 research outputs found

    Comparative Analysis of Clinical Epidemiology and Pathological Characteristics of 908 Patients with Primary Lung Cancer of Hunan Province in 1997 and 2007

    Get PDF
    Background and objective Epidemiology of lung cancer will be changed along with time and region. The aim of this study is to acknowledge the tendency of primary lung cancer in hunan province in recent years by comparing and analyzing the distribution of gender, age, area, smoking and pathology of patients who were initial diagnosed lung cancer and ancestral or permanent residence of hunan province in 1997 and 2007. Methods Clinical data of 908 patients with primary lung cancer hospitalized in Xiangya hospital were collected and evaluated. Results Compared patients in 2007 with those in 1997, ratio between male and female dropped from 3.8:1 to 2.98:1, while the proportion of young patients who were under 40 years old raised from 4.4% to 8.6% (χ2=4.465, P=0.035), patients living in the county raised from 19.9% to 40.1% (χ2=30.670, P < 0.001), smoking rate of patients from county raised from 16.9% to 39.9% (χ2= 24.939, P < 0.01). In addition, the proportion of rare histological types of lung cancer were also increased from 1.3% to 4.5% (χ2= 5.142, P=0.023). Conclusion Female patients, young patients, rural patients and rare histological types of lung cancer may have a tendency of increase in hunan province in recent years, whereas smoking cessation education should be strengthened

    Circ-CCS regulates oxaliplatin resistance via targeting miR-874-3p/HK2 axis in colorectal cancer

    Get PDF
    Background. Colorectal cancer (CRC) is a malignancy that threatens the patient’s life. Previous reports showed that circular RNAs (circRNAs) can affect CRC development. Herein, we demonstrated the characters of circular RNA copper chaperone for superoxide dismutase (circ-CCS) in CRC tissues and cells. Methods. Circ-CCS, CCS mRNA, microRNA-8743p (miR-874-3p) and hexokinase 2 (HK2) were indicated by qRT-PCR and western blot in CRC. The cell roles were examined. Additionally, the interaction between miR-874-3p and circ-CCS or HK2 was forecasted by the bioinformatics method and assessed by dual-luciferase reporter assay. Finally, the mouse test was implemented to demonstrate the effect of circ-CCS in vivo. Results. Circ-CCS and HK2 were increased, whereas miR-874-3p was diminished in CRC. Circ-CCS lack subdued the IC50 value of oxaliplatin, cell proliferation, migration, invasion and glycolysis metabolism in CRC cells, while it endorsed cell apoptosis. Furthermore, miR-874-3p was validated as having a tumor repressive effect in CRC cells by restraining HK2. The results also showed that HK2 could regulate the development of CRC. In mechanism, circ-CCS targeted miR-874-3p to control HK2. In addition, circ-CCS knock-down also attenuated tumor growth in mice. Conclusion. Circ-CCS expedited CRC through miR874-3p/HK

    Integrated radiative and evaporative cooling beyond daytime passive cooling power limit

    Get PDF
    Radiative cooling technologies can passively gain lower temperature than that of ambient surroundings without consuming electricity, which has emerged as potential alternatives to traditional cooling methods. However, the limitations in daytime radiation intensity with a net cooling power of less than 150 W·m−2 have hindered progress toward commercial practicality. Here, we report an integrated radiative and evaporative chiller (IREC) based on polyacrylamide hydrogels combined with an upper layer of breathable poly(vinylidene fluoride-co-trifluoroethylene) fibers, which achieves a record high practical average daytime cooling power of 710 W·m−2. The breathable fiber layer has an average emissivity of over 76% in the atmospheric window, while reflecting 90% of visible light. This IREC possesses effective daytime radiative cooling while simultaneously ensuring evaporative cooling capability, enhancing daytime passive cooling effectively. As a result, IREC presents the practicability for both personal cooling managements and industrial auxiliary cooling applications. An IREC-based patch can assist in cooling human body by 13 °C low for a long term and biocompatible use, and IREC can maintain the temperature of industrial storage facilities such as oil tanks at room temperature even under strong sunlight irradiation. This work delivers the highest performance daytime passive cooling by simultaneous infrared radiation and water evaporation, and provides a new perspective for developing highly efficient, scalable, and affordable passive cooling strategy

    Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions

    Full text link
    The signal properties of polycrystalline mercuric iodide (HgI2) film detectors, under irradiation conditions relevant to mammographic, radiographic, fluoroscopic and radiotherapy x-ray imaging, are reported. Each film detector consists of an ∼230 to ∼460 µm thick layer of HgI2 (fabricated through physical vapour deposition or a screen-print process) and a thin barrier layer, sandwiched between a pair of opposing electrode plates. The high atomic number, high density and low effective ionization energy, WEFF, of HgI2 make it an attractive candidate for significantly improving the performance of active matrix, flat-panel imagers (AMFPIs) for several x-ray imaging applications. The temporal behaviour of current from the film detectors in the presence and in the absence of radiation was used to examine dark current levels, the lag and reciprocity of the signal response, x-ray sensitivity and WEFF. The results are discussed in the context of present AMFPI performance. This study provides performance data for a wide range of potential medical x-ray imaging applications from a single set of detectors and represents the first investigation of the signal properties of polycrystalline mercuric iodide for the radiotherapy application.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48980/2/pmb5_12_012.pd

    High-yield synthesis and optical properties of g-C₃N₄

    Get PDF
    Graphitic carbon nitride (g-C₃N₄), a metal-free semiconductor with a band gap of 2.7 eV, has received considerable attention owing to its fascinating photocatalytic performances under visible-light. g-C₃N₄ exhibits high thermal and chemical stability and non-toxicity such that it has been considered as the most promising photocatalyst for environmental improvement and energy conservation. Hence, it is of great importance to obtain high-quality g-C₃N₄ and gain a clear understanding of its optical properties. Herein, we report a high-yield synthesis of g-C₃N₄ products via heating of high vacuum-sealed melamine powder in an ampoule at temperatures between 450 and 650°C. Using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), the chemical composition and crystallization of the as-produced g-g-C₃N₄ are demonstrated. A systematic optical study of g-g-C₃N₄ is carried out with several approaches. The optical phonon behavior of g-C₃N₄ is revealed by infrared and Raman spectroscopy, and the emission properties of g-C₃N₄ are investigated using photoluminescence (PL) spectroscopy, while the photocatalytic properties are explored by the photodegradation experiment

    An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    Get PDF
    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts

    A prognostic nomogram for recurrence survival in post-surgical patients with varicose veins of the lower extremities

    No full text
    Abstract Varicose veins of the lower extremities (VVLEs) are prevalent globally. This study aims to identify prognostic factors and develop a prediction model for recurrence survival (RS) in VVLEs patients after surgery. A retrospective analysis of VVLEs patients from the Third Hospital of Nanchang was conducted between April 2017 and March 2022. A LASSO (Least Absolute Shrinkage and Selection Operator) regression model pinpointed significant recurrence predictors, culminating in a prognostic nomogram. The model’s performance was evaluated by C-index, receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis (DCA). The LASSO regression identified seven predictors for the nomogram predicting 1-, 2-, and 5-year RS. These predictors were age, body mass index (BMI), hypertension, diabetes, the Clinical Etiological Anatomical Pathophysiological (CEAP) grade, iliac vein compression syndrome (IVCS), and postoperative compression stocking duration (PCSD). The nomogram’s C-index was 0.716, with AUCs (Area Under the Curve scores) of 0.705, 0.725, and 0.758 for 1-, 2-, and 5-year RS, respectively. Calibration and decision curve analyses validated the model’s predictive accuracy and clinical utility. Kaplan–Meier analysis distinguished between low and high-risk groups with significant prognostic differences (P < 0.05). This study has successfully developed and validated a nomogram for predicting RS in patients with VVLEs after surgery, enhancing personalized care and informing clinical decision-making

    Comparison of minimal access and open breast surgery: a propensity score-matched study on postoperative immune function in breast cancer

    No full text
    Abstract Background Minimal access breast surgery (MABS) is commonly employed in the management of breast cancer, but there is limited research on the postoperative immune function associated with MABS. Objective This study aimed to assess the postoperative immune function in breast patients who underwent MABS or conventional open breast surgery (COBS). Methods We retrospectively analyzed the medical records of 829 breast cancer patients treated with either MABS or COBS at a single hospital between January 2020 and June 2023. Among them, 116 matched pairs were obtained through 1:1 propensity score matching (PSM). Flow cytometry was used to measure the percentages of CD3+, CD4+, and CD8+ cells, as well as the CD4+/CD8+ ratio, on three different time points: preoperative day 1 (PreD1), postoperative day 1 (PostD1), and postoperative day 7 (PostD7). Results Both the MABS and COBS groups demonstrated a significant reduction in the percentages of CD3+, CD4+, and CD8+ cells, along with the CD4+/CD8+ ratio, from PreD1 to PostD1. Interestingly, the MABS group showed a reversal of these parameters, returning to preoperative levels by PostD7. Conversely, the COBS group showed an increase in these parameters from PostD1 to PostD7, but they still remained significantly lower than preoperative levels at PostD7. Conclusion MABS treatment may result in reduced postoperative immune suppression and faster recovery of preoperative immune function compared to COBS in patients
    • …
    corecore