10 research outputs found
Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation
<p>Abstract</p> <p>Background</p> <p>Our previous study showed that, in basal cell carcinoma cells, arecoline reduces levels of the tumor cell survival factor interleukin-6 (IL-6), increases levels of tumor suppressor factor p53, and elicits cell cycle arrest, followed by apoptosis. In preliminarily studies, we observed that arecoline induces detachment of the human-derived hepatoma cell line HA22T/VGH from the extracellular matrix. In the present study, we explored the fate of the detached HA22T/VGH cells and investigated the underlying mechanism.</p> <p>Methods</p> <p>HA22T/VGH cells or primary cultured rat hepatocytes were treated with arecoline, then changes in morphology, viability, apoptosis, and the expression of surface β1-integrin, apoptosis-related proteins, and IL-6 were examined. Furthermore, activation of the signal transducer and activator of transcription 3 (STAT3) pathway and the RhoA/Rock signaling pathway, including p190RhoGAP and Src homology-2 domain-containing phosphatase SHP2, was examined.</p> <p>Results</p> <p>A low concentration of arecoline (≤ 100 μg/ml) caused cytoskeletal changes in HA22T/VGH cells, but not hepatocytes, and this was accompanied by decreased β1-integrin expression and followed by apoptosis, indicating that HA22T/VGH cells undergo anoikis after arecoline treatment. IL-6 expression and phosphorylation of STAT3, which provides protection against anoikis, were inhibited and levels of downstream signaling proteins, including Bcl-X<sub>L </sub>and Bcl-2, were decreased, while Bax expression, mitochondrial cytochrome c release, and caspase-3 activity were increased. In addition, phosphorylation/activation of p190RhoGAP, a RhoA inhibitor, and of its upstream regulator, SHP2, was inhibited by arecoline treatment, while Rho/Rock activation was increased. Addition of the RhoA inhibitor attenuated the effects of arecoline.</p> <p>Conclusions</p> <p>This study demonstrated that arecoline induces anoikis of HA22T/VGH cells involving inhibition of STAT3 and increased RhoA/Rock activation and that the STAT3 and RhoA/Rock signaling pathways are connected.</p
Progesterone Increases Apoptosis and Inversely Decreases Autophagy in Human Hepatoma HA22T/VGH Cells Treated with Epirubicin
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide. Epirubicin can induce intracellular reactive oxygen species and is widely used to treat unresectable HCC. Progesterone has been found to inhibit the proliferation of hepatoma cells. This study was designed to test the combined effects of epirubicin and progesterone on human hepatoma cell line, HA22T/VGH. These cells were treated with different concentrations of epirubicin with or without the coaddition of 30 μM progesterone and then analyzed for apoptosis, autophagy, and expressions of apoptotic-related proteins and multidrug-resistant gene. Epirubicin treatment dose-dependently inhibited the growth of HA22T/VGH cells. Addition of 30 μM progesterone, which was inactive alone, augmented the effect of epirubicin on the inhibition of growth of HA22T/VGH cells. Cotreatment with progesterone enhanced epirubicin-induced apoptosis, as evidenced by greater increase in caspase-3 activity and in the ratio of the apoptosis-regulating protein, Bax/Bcl-XL. The combination also caused a decrease in autophagy and in the expression of multidrug resistance-related protein 1 mRNA compared to epirubicin alone. This study shows the epirubicin/progesterone combination was more effective in increasing apoptosis and inversely decreasing autophagy on HA22T/VGH cells treated with epirubicin alone, suggesting that this combination can potentially be used to treat HCC
S-Equol Ameliorates Menopausal Osteoarthritis in Rats through Reducing Oxidative Stress and Cartilage Degradation
Osteoarthritis (OA) is a chronic degenerative disease leading to articular cartilage destruction. Menopausal and postmenopausal women are susceptible to both OA and osteoporosis. S-equol, a soy isoflavone-derived molecule, is known to reduce osteoporosis in estrogen-deficient mice, but its role in OA remains unknown. This study aimed to explore the effect of S-equol on different degrees of menopausal OA in female Sprague–Dawley (SD) rats induced by estrogen deficiency caused by bilateral ovariectomy (OVX) combined with intra-articular injection of mono-iodoacetate (MIA). Knee joint histopathological change; serum biomarkers of bone turnover, including N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (CTX-I) and N-terminal telopeptide of type I collagen (NTX-I); the cartilage degradation biomarkers hyaluronic acid (HA) and N-terminal propeptide of type II procollagen (PIINP); and the matrix-degrading enzymes matrix metalloproteinases (MMP)-1, MMP-3 and MMP-13, as well as the oxidative stress-inducing molecules nitric oxide (NO) and hydrogen peroxide (H2O2), were assessed for evaluation of OA progression after S-equol supplementation for 8 weeks. The results showed that OVX without or with MIA injection induced various severity levels of menopausal OA by increasing pathological damage, oxidative stress, and cartilage matrix degradation to various degrees. Moreover, S-equol supplementation could significantly reduce these increased biomarkers in different severity levels of OA. This indicates that S-equol can lessen menopausal OA progression by reducing oxidative stress and the matrix-degrading enzymes involved in cartilage degradation
Selenium Lessens Osteoarthritis by Protecting Articular Chondrocytes from Oxidative Damage through Nrf2 and NF-κB Pathways
Osteoarthritis (OA) causes joint pain and disability due to the abnormal production of inflammatory cytokines and reactive oxygen species (ROS) in chondrocytes, leading to cell death and cartilage matrix destruction. Selenium (Se) intake can protect cells against oxidative damage. It is still unknown whether Se supplementation is beneficial for OA. This study investigated the effects of Se on sodium iodoacetate (MIA)-imitated OA progress in human chondrocyte cell line (SW1353 cells) and rats. The results showed that 0.3 μM of Se treatment could protect SW1353 cells from MIA-induced damage by the Nrf2 pathway by promoting the gene expression of glutathione-synthesis-related enzymes such as the glutamate–cysteine ligase catalytic subunit, the glutamate–cysteine ligase modifier subunit, and glutathione synthetase. In addition, glutathione, superoxide dismutase, glutathione peroxidase, and glutathione reductase expressions are also elevated to eliminate excessive ROS production. Moreover, Se could downregulate NF-κB, leading to a decrease in cytokines, matrix proteases, and glycosaminoglycans. In the rats, MIA-induced cartilage loss was lessened after 2 weeks of Se supplementation by oral gavage; meanwhile, glutathione synthesis was increased, and the expressions of pro-inflammatory cytokines were decreased. These results suggest that Se intake is beneficial for OA due to its effects of decreasing cartilage loss by enhancing antioxidant capacity and reducing inflammation
Zinc Protects Articular Chondrocytes through Changes in Nrf2-Mediated Antioxidants, Cytokines and Matrix Metalloproteinases
Osteoarthritis (OA) is an age-related degenerative joint disease characterized by high oxidative stress, chondrocyte death and cartilage damage. Zinc has been implicated in the antioxidant capacity of the cell, and its deficiency might inhibit chondrocyte proliferation. The present study examined the potential of zinc as a preventive supplement against OA using the in vitro chondrosarcoma cell line SW1353 and an in vivo Wistar rat model to mimic OA progress induced by monosodium iodoacetate (MIA). The results demonstrated that, in SW1353 cells, 5 μM MIA exposure increased oxidative stress and decreased the expression of GPx1 and Mn-SOD but still increased GSH levels and HO-1 expression and enhanced the expression of interleukin (IL)-10, IL-1β, and matrix metalloproteinase (MMP)-13. Zinc addition could block these changes. Besides, the expression of Nrf2 and phosphorylated (p)-Akt was dramatically increased, implicating the p-Akt/Nrf2 pathway in the effects of zinc on MIA-treated cells. A rat model achieved similar results as those of cell culture, and 1.6 mg/kg/day of zinc supplementation is sufficient to prevent OA progress, while 8.0 mg/kg/day of zinc supplementation does not have a better effect. These findings indicate that zinc supplementation exerts a preventive effect with respect to MIA-induced OA progress
Vitamin C Protects Chondrocytes against Monosodium Iodoacetate-Induced Osteoarthritis by Multiple Pathways
Osteoarthritis (OA) is the most prevalent joint disease. Dietary intake of vitamin C relates to a reduction in cartilage loss and OA. This study examined the efficacy of vitamin C to prevent OA with the in vitro chondrosarcoma cell line (SW1353) and the in vivo monosodium iodoacetate (MIA)-induced OA rat. Results demonstrated that, in SW1353 cells, treatment with 5 μM MIA inhibited cell growth and increased oxidative stress, apoptosis, and proteoglycan loss. In addition, the expression levels of the pro-inflammatory cytokines IL-6, IL-17A, and TNF-α and matrix metalloproteinases (MMPs) MMP-1, MMP-3, and MMP-13 were increased. All of these MIA-induced changes could be prevented with treatment of 100 μM vitamin C. In an animal model, intra-articular injection of MIA-induced cartilage degradation resembled the pathological changes of OA, and treatment of vitamin C could lessen these changes. Unexpectedly, vitamin C’s effects did not strengthen with the increasing dosage, while the 100 mg/kg dosage was more efficient than the 200 or 300 mg/kg dosages. Vitamin C possessed multiple capacities for prevention of OA progress, including a decrease in apoptosis and in the expression of pro-inflammatory cytokines and MMPs in addition to the well-known antioxidation