988 research outputs found

    LIME : Software for 3-D visualization, interpretation, and communication of virtual geoscience models

    Get PDF
    Parts of LIME have been developed to address research requirements in projects funded by the Research Council of Norway (RCN) through the Petromaks and Petromaks 2 programs. The following grants are acknowledged: 153264 (VOG [Virtual Outcrop Geology]; with Statoil ASA), 163316 (Carbonate Reservoir Geomodels [IRIS (International Research Institute of Stavanger)]), 176132 (Paleokarst Reservoirs [Uni Research CIPR]), 193059 (EUSA; with FORCE Sedimentology and Stratigraphy Group), 234152 (Trias North [University of Oslo]; with Deutsche Erdoel AG, Edison, Lundin, Statoil, and Tullow), 234111 (VOM2MPS [Uni Research CIPR]; with FORCE Sedimentology and Stratigraphy Group), as well as SkatteFUNN (RCN) project 266740. In addition, the SAFARI project consortium (http://safaridb.com) is thanked for its continued support. The OSG and wxWidgets communities are acknowledged for ongoing commitment to providing mature and powerful software libraries. All authors thank colleagues past and present for studies culminating in the presented figures: Kristine Smaadal and Aleksandra Sima (Figs. 1 and 4); Colm Pierce (Fig. 2A); Eivind Bastesen, Roy Gabrielsen and Haakon Fossen (Fig. 3); Christian Haug Eide (Fig. 7); Ivar Grunnaleite and Gunnar SĂŠlen (Fig. 8); and Magda Chmielewska (Fig. 9). Isabelle Lecomte contributed to discussions on geospatial-geophysical data fusion. Bowei Tong and Joris Vanbiervliet are acknowledged for internal discussions during article revision. The lead author thanks Uni Research for providing a base funding grant to refine some of the presented features. Finally, authors Buckley and Dewez are grateful to Institut Carnot BRGM for the RADIOGEOM mobility grant supporting the writing of this paper. Corbin Kling and one anonymous reviewer helped improve the final manuscript.Peer reviewedPublisher PD

    Developing a COVID-19 Medical Respite Unit for Adults Experiencing Homelessness: Lessons Learned from an Interdisciplinary Community-Academic Partnership

    Full text link
    Individuals experiencing homelessness are at particularly high risk for infection, severe illness, and death from COVID19. Local public health initiatives to address the pandemic should include medical respite services for individuals experiencing homelessness with documented or suspected COVID-19 infection, who are well enough to not be admitted to the hospital. We are a group of public health officials, clinicians, academics, and non-profit leaders who partnered with the City of New Haven, Connecticut to develop a COVID-19 medical respite program for people experiencing homelessness in our community. We seek to describe the key processes and challenges inherent to designing the COVID-19 respite including: the balance between patient autonomy and a public health agenda, how to deliver trauma informed, equitable, patient-centered, high quality care with low resources, and approaches to program evaluation.There is no funding specific to this article. This publication was made possible by the Yale National Clinician Scholars Program and by CTSA Grant Number TL1 TR001864 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.https://deepblue.lib.umich.edu/bitstream/2027.42/155396/1/Nash main article.pdfDescription of Nash main article.pdf : Main articl

    Executable network of SARS-CoV-2-host interaction predicts drug combination treatments

    Get PDF
    The COVID-19 pandemic has pushed healthcare systems globally to a breaking point. The urgent need for effective and affordable COVID-19 treatments calls for repurposing combinations of approved drugs. The challenge is to identify which combinations are likely to be most effective and at what stages of the disease. Here, we present the first disease-stage executable signalling network model of SARS-CoV-2-host interactions used to predict effective repurposed drug combinations for treating early- and late stage severe disease. Using our executable model, we performed in silico screening of 9870 pairs of 140 potential targets and have identified nine new drug combinations. Camostat and Apilimod were predicted to be the most promising combination in effectively supressing viral replication in the early stages of severe disease and were validated experimentally in human Caco-2 cells. Our study further demonstrates the power of executable mechanistic modelling to enable rapid pre-clinical evaluation of combination therapies tailored to disease progression. It also presents a novel resource and expandable model system that can respond to further needs in the pandemic

    Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    Get PDF
    The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift z=0.004523z=0.004523) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before BB-band maximum). Our first detection (pre-discovery) is merely 0.6±0.50.6\pm0.5 day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of \ion{Si}{2} λ\lambda6355 (∌12,600\sim 12,600\,\kms\ around peak brightness). The \ion{Si}{2} λ\lambda6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (MB≈−18.9±0.2M_B \approx -18.9 \pm 0.2 mag), and it reaches a BB-band maximum \about16.0~d after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na~I~D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the \ion{Si}{2} line polarization is quite strong (∌0.9%±0.1%\sim 0.9\% \pm 0.1\%) at peak brightness.Comment: Submitte

    Four sub-Saturns with dissimilar densities: windows into planetary cores and envelopes

    Get PDF
    We present results from a Keck/HIRES radial velocity campaign to study four sub-Saturn-sized planets, K2-27b, K2-32b, K2-39b, and K2-108b, with the goal of understanding their masses, orbits, and heavy-element enrichment. The planets have similar sizes (RP=4.5-5.5 ), but have dissimilar masses (MP=16-60 ), implying a diversity in their core and envelope masses. K2-32b is the least massive (MP = 16.5 ± 2.7 M) and orbits in close proximity to two sub-Neptunes near a 3:2:1 period commensurability. K2-27b and K2-39b are significantly more massive at MP = 30.9 ± 4.6 M and MP = 39.8 ± 4.4 M, respectively, and show no signs of additional planets. K2-108b is the most massive at MP = 59.4 ± 4.4 M, implying a large reservoir of heavy elements of about ≈50 . Sub-Saturns as a population have a large diversity in planet mass at a given size. They exhibit remarkably little correlation between mass and size; sub-Saturns range from ≈6-60 M, regardless of size. We find a strong correlation between planet mass and host star metallicity, suggesting that metal-rich disks form more massive planet cores. The most massive sub-Saturns tend to lack detected companions and have moderately eccentric orbits, perhaps as a result of a previous epoch of dynamical instability. Finally, we observe only a weak correlation between the planet envelope fraction and present-day equilibrium temperature, suggesting that photo-evaporation does not play a dominant role in determining the amount of gas sub-Saturns accrete from their protoplanetary disks

    Characterizing K2 Candidate Planetary Systems Orbiting Low-Mass Stars II: Planetary Systems Observed During Campaigns 1-7

    Get PDF
    We recently used near-infrared spectroscopy to improve the characterization of 76 low-mass stars around which K2 had detected 79 candidate transiting planets. 29 of these worlds were new discoveries that had not previously been published. We calculate the false positive probabilities that the transit-like signals are actually caused by non-planetary astrophysical phenomena and reject five new transit-like events and three previously reported events as false positives. We also statistically validate 17 planets (7 of which were previously unpublished), confirm the earlier validation of 22 planets, and announce 17 newly discovered planet candidates. Revising the properties of the associated planet candidates based on the updated host star characteristics and refitting the transit photometry, we find that our sample contains 21 planets or planet candidates with radii smaller than 1.25 R⊕, 18 super-Earths (1.25–2 R⊕), 21 small Neptunes (2–4 R⊕), three large Neptunes (4–6 R⊕), and eight giant planets (>6 R⊕). Most of these planets are highly irradiated, but EPIC 206209135.04 (K2-72e, 1.29^(+0.14)_(-0.13) R⊕), EPIC 211988320.01 (R_p = 2.86^(+0.16)_(-0.15) R⊕), and EPIC 212690867.01 (2.20^(+0.19)_(-0.18) R⊕) orbit within optimistic habitable zone boundaries set by the "recent Venus" inner limit and the "early Mars" outer limit. In total, our planet sample includes eight moderately irradiated 1.5–3 R⊕ planet candidates (F_p ≟ 20 F⊕) orbiting brighter stars (Ks < 11) that are well-suited for atmospheric investigations with the Hubble, Spitzer, and/or James Webb Space Telescopes. Five validated planets orbit relatively bright stars (Kp < 12.5) and are expected to yield radial velocity semi-amplitudes of at least 2 m s^(−1). Accordingly, they are possible targets for radial velocity mass measurement with current facilities or the upcoming generation of red optical and near-infrared high-precision RV spectrographs

    New Leaders, New Thoughts: Perspectives on Leadership in the 21st Century

    Get PDF
    Winona State University\u27s Change Leadership graduate course is comprised of seventeen individuals from different generations, with a broad range of skills, backgrounds, and professional expertise. Despite differences, all share a common goal; the desire to become more effective leaders in today’s evolving world. These 21st Century Leaders study, apply basic theory, and develop skills for management and leadership within organizations. Emerging leaders hope to impact the growth, sustainability, and integrity within those organizations. These New Leaders have studied problems and issues influencing individuals and group behavior within organizations to develop collaborative practices, strategies and to empower and advocate for others. New Leaders, New Thoughts is a collection of theory and perspectives on leadership. “There are many issues facing leadership that make studying leadership a must. For example, being able to relay a task, a process, a vision, a mission, or simply transfer daily events all require what many leaders have a difficult time achieving: effective communication.” -Alex Howell This book was created for the fall 2018 Change Leadership course taught by Dr. Barbara Holmes for the WSU Leadership Education Department.https://openriver.winona.edu/leadershipeducationbooks/1002/thumbnail.jp

    A novel systems biology approach to evaluate mouse models of late-onset Alzheimer\u27s disease.

    Get PDF
    BACKGROUND: Late-onset Alzheimer\u27s disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer\u27s have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes. RESULTS: This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounterÂź Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of the 5xFAD mouse, a widely used amyloid pathology model, and three mouse models based on LOAD genetics carrying APOE4 and TREM2*R47H alleles demonstrated overlaps with distinct human AD modules that, in turn, were functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq showed strong correlation between gene expression changes independent of experimental platform. CONCLUSIONS: Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models

    PTF11eon/SN2011dh: Discovery of a Type IIb Supernova From a Compact Progenitor in the Nearby Galaxy M51

    Get PDF
    On May 31, 2011 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras, as well as by the Palomar Transient Factory (PTF) survey, and rapidly confirmed it to be a Type II supernova. Our early light curve and spectroscopy indicates that PTF11eon resulted from the explosion of a relatively compact progenitor star as evidenced by the rapid shock-breakout cooling seen in the light curve, the relatively low temperature in early-time spectra and the prompt appearance of low-ionization spectral features. The spectra of PTF11eon are dominated by H lines out to day 10 after explosion, but initial signs of He appear to be present. Assuming that He lines continue to develop in the near future, this SN is likely a member of the cIIb (compact IIb; Chevalier and Soderberg 2010) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~10^13 cm) would be highly inconsistent with constraints from our post-explosion photometric and spectroscopic data
    • 

    corecore