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METHODOLOGY Open Access

A novel systems biology approach to
evaluate mouse models of late-onset
Alzheimer’s disease
Christoph Preuss1†, Ravi Pandey1†, Erin Piazza2, Alexander Fine1, Asli Uyar1, Thanneer Perumal2, Dylan Garceau1,
Kevin P. Kotredes1, Harriet Williams1, Lara M. Mangravite3, Bruce T. Lamb4, Adrian L. Oblak4, Gareth R. Howell1,
Michael Sasner1, Benjamin A. Logsdon3, the MODEL-AD Consortium and Gregory W. Carter1*

Abstract

Background: Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia worldwide. To date,
animal models of Alzheimer’s have focused on rare familial mutations, due to a lack of frank neuropathology from
models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes
have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of
relevant endophenotypes.

Results: This resource enables precise gene-based alignment between new animal models and human molecular
signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A
new NanoString nCounter® Mouse AD panel was designed to correlate key human disease processes and pathways
with mRNA from mouse brains. Analysis of the 5xFAD mouse, a widely used amyloid pathology model, and three
mouse models based on LOAD genetics carrying APOE4 and TREM2*R47H alleles demonstrated overlaps with
distinct human AD modules that, in turn, were functionally enriched in key disease-associated pathways.
Comprehensive comparison with full transcriptome data from same-sample RNA-Seq showed strong correlation
between gene expression changes independent of experimental platform.

Conclusions: Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly
reproducible approach to assess disease relevance of potential LOAD mouse models.

Background
Late-onset Alzheimer’s disease (LOAD) is the most
common cause of dementia worldwide [1]. LOAD presents
as a heterogenous disease with highly variable outcomes.
Recent efforts have been made to molecularly characterize
LOAD using large cohorts of post-mortem human brain
transcriptomic data [2]. Systems-level analysis of these
large human data sets has revealed key drivers and molecu-
lar pathways that reflect specific changes resulting from

disease [2, 3]. These studies have been primarily driven by
gene co-expression analyses that reduce transcriptomes to
modules representing specific disease processes or cell
types across heterogenous tissue samples [2, 4–6]. Similar
approaches have been used to characterize mouse models
of neurodegenerative disease [7]. Detailed cross-species
analysis reveals a translational gap between animal models
and human disease, as no existing models fully recapitulate
pathologies associated with LOAD [8–11]. New platforms
to rapidly assess the translational relevance of new animal
models of LOAD will allow efficient identification of the
most promising preclinical models.
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In this study, we describe a novel gene expression
panel to assess LOAD-relevance of mouse models based
on expression of key genes in the brain. We used a
recent human molecular disease catalog based on
harmonized co-expression data from three independent
post mortem brain cohorts (ROSMAP, Mayo, Mount
Sinai Brain bank) [12–14] and seven brain regions that
define 30 human co-expression modules and five consen-
sus clusters derived from the overlap of those modules [9].
These modules were used to design a mouse gene expres-
sion panel to assess the molecular overlap between human
disease states and mouse models. This nCounter Mouse
AD panel was piloted with samples from three novel
mouse models of LOAD. Same-sample comparison be-
tween NanoString and RNA-Seq data demonstrated high
per-gene correlation and overall concordance when

separately compared to human disease co-expression
modules. Taken together, the rapid screening of mouse
models in the course of different life stages will allow
better characterization of models based on alignment with
specific human molecular pathologies.

Results
Human-mouse co-expression module conservation and
probe coverage across 30 LOAD associated modules
An overview of the Mouse AD panel design for translating
the 30 human AMP-AD co-expression modules from three
cohorts and seven brain regions is depicted in Fig. 1. Mouse
to human gene prioritization resulted in the selection of
760 key mouse genes targeting a subset of highly co-
expressed human genes plus 10 housekeeping genes, which
explained a significant proportion of the observed variance

Fig. 1 Overview of the nCounter Mouse AD panel design. The novel Mouse AD panel measures expression of genes from a set of 30 human co-
expression modules from three human LOAD cohorts, including seven distinct brain regions. Human genes central to each of the human
expression modules were prioritized for the Mouse AD panel to select conserved signatures of LOAD associated pathways
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across the 30 human AMP-AD modules (Methods). Co-
expression modules were grouped into functionally distinct
consensus clusters as previously described by Wan, et al.
(see also Table S1) [9]. These consensus clusters contain
expression modules from different brain regions and inde-
pendent studies that share a high overlap in gene content
and similar expression characteristics. Consensus clusters
were annotated based on Reactome pathway enrichment
analysis for the corresponding genes within each function-
ally distinct cluster (Methods, Table S1). Since consensus
clusters showed an enrichment of multiple biological path-
ways, the highest rank and non-overlapping Reactome
pathway was used to refer to each cluster (Table S2). In
order to assess the conservation of sequence and gene ex-
pression levels between human and mouse genes for each
of the 30 human co-expression modules, dN/dS values
were correlated with the overall overlap in expression in
brains from six-month-old C57BL/6 J (B6) mice (Fig. 2a).
The fraction of orthologous genes expressed in the mouse
brain, based on the presence or absence of transcripts at de-
tectable levels, was very highly correlated with the overall
module conservation (p < 2.2 × 10− 16, Pearson’s correlation
coefficient: − 0.96). Module conservation was based on the
median dN/dS statistics measuring the rate of divergence in
the coding sequence for all genes within a given module be-
tween both species (Figure S1). Notably, human co-
expression modules of Consensus Cluster C, associated
with the neuronal system and neurotransmission, showed
the lowest degree of sequence divergence with a high pro-
portion of human genes (64–72%) expressed in six-month-
old B6 mice. In contrast to the highly conserved neuronal
modules, immune modules of Consensus Cluster B con-
tained genes that recently diverged on the sequence level
and acquired a higher number of destabilizing missense
variants. These modules showed the highest median dN/
dS values and the lowest fraction of genes (27–46%)
expressed in the mouse brain across all tested
modules. The remaining human co-expression mod-
ules, associated with different functional categories
(Fig. 2a, Table S1), had intermediate overlap in
expression levels between human and mice. Each of
the 30 human co-expression modules was covered with
an average of 148 NanoString mouse probes (SD = 50
probes), where a single mouse probe can map to multiple
human modules from different study cohorts and across
several brain regions. Overall, mouse probe coverage for
human co-expression modules ranged between 4 and 19%,
depending on the size and level of conservation of the
targeted human module (Fig. 2b and c, Tables S2 and S3).
For three of the largest human co-expression modules
harboring over 4000 transcripts, the probe coverage
was slightly below the targeted 5% coverage threshold.
However, these large modules are predominantly asso-
ciated with neuronal function and show a high degree

of expression and sequence conservation between human
and mouse (Figs. 2a). Immune modules, containing genes
that recently diverged on the coding sequence level, are
well covered with a median coverage of 10% (Fig. 2c). A
complete annotation of mouse probes to human tran-
scripts for each human co-expression module is provided
in Table S3. In addition, we compared our novel panel to
the existing nCounter Mouse Neuropathology panel de-
signed to assess expression changes in multiple neurode-
generative diseases. We observed an overlap of 105 probes
(7%) between both panels, highlighting that most of our
selected probe content is novel and specific to LOAD
associated disease processes and pathways.

Prioritized subset of key genes shows a higher degree of
sequence conservation and expression level across
modules
In order to assess the level of sequence divergence and
expression for the prioritized subset of genes on the
novel panel, the selected subset of genes was compared
to all genes across the 30 human co-expression modules.
The 760 key genes, explaining a significant proportion of
the observed variance in each human module, showed
an overall lower level of sequence divergence (median
dN/dS values) when compared to all other genes in the
modules (Fig. 3, Figure S1). Furthermore, the selected
key genes on the Mouse AD panel also displayed a
higher average level of gene expression in brains of six-
month-old B6 mice compared to the remaining genes
for each of the 30 modules (Fig. 3). This highlights that
our formal prioritization procedure resulted in the selec-
tion of a subset of highly expressed key genes, which are
also more conserved between human and mouse facili-
tating the translation of co-expression profiles across
species.

5xFAD mouse co-expression modules correlate with AMP-
AD modules enriched for inflammatory and stress
response pathways
To validate our novel Mouse AD panel, a time-course
analysis was performed to correlate human AMP-AD
co-expression modules with the 5xFAD mouse model
carrying a transgenic insertion with five familial muta-
tions in APP and PSEN1. The 5xFAD strain is a com-
monly used model of neurodegenerative disease for
which neuropathology, histological as well as behavioral
data are readily available (Fig. 4a). We analyzed mouse
NanoString data from brain hemispheres from 1 to 12
months old mice in order to identify an overlap with hu-
man post-mortem co-expression modules in the course
of amyloid deposition and aging. 5xFAD mice have been
shown to accumulate high levels of intraneuronal Aβ42
at around 1.5 months of age and extracellular amyloid at
around 2months of age in the subiculum and cortex
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(Fig. 4a) [15]. Amyloid deposition in 5xFAD mice in-
duced rising oxidative stress in surrounding cells and
tissues and led to subsequent cell dysfunction and eleva-
tion of apoptosis markers. This is reflected in the transcrip-
tomic response of one to 2 months old 5xFAD mice which
showed a significant positive correlation (p < 0.05,

Pearson’s correlation coefficient > 0.25) with multiple hu-
man AMP-AD modules enriched for pathways linked to
the cellular stress response in Consensus Cluster E (Fig.
4a). The 5XFAD strain also exhibited neuroinflammation
after 2months of age, as previously demonstrated by an in-
crease in astrogliosis and microgliosis after initial plaque

Fig. 2 Human to mouse comparison and probe coverage summary statistics. a Human-mouse sequence divergence (median dN/dS values) is
inversely correlated (Pearson’s correlation coefficient: − 0.96) with the fraction of genes being expressed in B6 mouse brain for each of the human
co-expression modules. b Coverage of the 770 selected mouse NanoString probes for the 30 human co-expression modules associated with five
functional consensus clusters. The size and number of human co-expression modules differs for the three post-mortem brain cohorts (ROSMAP,
Mayo, Mount Sinai Brain Bank) and across the seven included brain regions. c This results in a varying degree of probe coverage for each module
with a number of disease associated consensus clusters (a-e), reflecting disease related pathways and processes
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deposition [15]. This is in line with our 5xFAD data from
the Mouse AD panel which showed an increased correl-
ation between 3 and 4months with several human mod-
ules in Consensus Cluster B enriched for immune related
pathways. Furthermore, we observed an increased correl-
ation with inflammatory AMP-AD co-expression modules
after 4months of age, where older mice at (6–12months)
showed a highly significant overlap with human immune
modules in the cerebellum, superior temporal gyrus and
inferior frontal gyrus (p < 0.05, Pearson’s correlation coeffi-
cient > 0.35). This clear shift in inflammatory gene expres-
sion signatures after 3months of age is a hallmark of the
5xFAD model in response to aggressive amyloid deposition
in the brain and corresponded with previous findings
from a transcriptomic survey of 5xFAD mice [16].
Reactome pathway analysis in 5xFAD mice compared
to age-matched B6 controls supported the results from
our correlation analysis (Fig. 4b). At a young age (3
months), several stress and immune related pathways were
enriched in 5xFAD mice when compared to B6 mice.
These pathways, including the activation of FOXO tran-
scription factors pathway, are well known to mediate a
cellular stress response to Aβ42 [17]. In older mice
between the ages of 6 to 12months, pathways linked to
microglia and complement activation, such as the DAP12
signaling pathway, were enriched in 5xFAD mice which is
in line with a previous study (Fig. 4b) [16]. Moreover, we
observed a positive correlation with human AMP-AD

modules enriched for neuronal pathways in Consensus
Cluster C. This transcriptional response occurred after
early amyloid deposition in male mice at 3 months
(p < 0.05, Pearson’s correlation coefficient > 0.15) and
after the onset of neuronal loss in female mice at 12
months. Taken together, our novel approach identified
several transcriptomic signatures in responses to amyl-
oid deposition in the 5xFAD model that correlated
with human post-mortem data from different brain
regions. Despite the overlap with several key disease
processes on the transcriptome level across species,
the 5xFAD strain does not fully recapitulate LOAD
pathologies. In addition, the highly penetrant nature of
the early-onset familial variants expressed on the 5xFAD
background made it difficult to identify disease related pro-
cesses independent of amyloid pathology. For this reason,
we used our approach to elucidate the role of additional
AD risk variants in a set of novel mouse models .

Novel mouse models harboring LOAD associated risk
variants correlate with distinct AMP-AD modules in a
brain region- and pathway-specific manner
Three novel mouse models, harboring two LOAD risk
alleles, (Table S4) were used to translate co-expression
profiles between human and mouse brain transcrip-
tome data using our novel Mouse AD panel. Transcrip-
tome analysis was performed for the APOE4 KI mouse,
carrying a humanized version of the strongest LOAD

Fig. 3 NanoString Mouse AD probe genes are strongly conserved and show high expression levels in the mouse brain. Comparison between
gene-level sequence divergence and transcript abundances in 6 months old B6 mouse brains for all genes (red) in human co-expression modules
and the subset of 770 genes covered by NanoString probes on the Mouse AD panel (green). Human transcripts within AMP-AD co-expression
modules targeted by selected mouse NanoString probes highlighted in green showed higher levels of sequence conservation and transcript
abundance across species when compared to unselected genes within modules
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associated risk allele (APOE-ε4) and the Trem2*R47H
mouse, which harbors a rare deleterious variant in
TREM2. The rare TREM2 R47H missense variant
(rs75932628) has been previously associated with
LOAD in multiple independent studies [15]. In our
RNA-Seq data, we observed that the variant impairs
expression in the Trem2*R47H model and results in
decreased expression of the major Trem2 isoform
(ENSMUST00000024791) compared to B6 mice (adjusted
FDR p = 4.26 × 10− 49, logFC = − 1.25). The decreased ex-
pression of Trem2 was also detected with the NanoString
Mouse AD panel (adjusted FDR p = 0.03, logFC = − 0.29).
The difference in log fold change reduction was potentially
due to mismatched dynamic range between platforms or
differences between aligned isoforms of RNA-Seq reads
and probe design in the Mouse AD Panel. In addition, a

mouse model harboring both, the common and rare AD
risk variants (APOE4 KI/Trem2*R47H) was used to
compare the transcriptional effects in mice carrying both
variants to mice carrying only a single risk allele and B6
controls. Mouse transcriptome data for half brains was
analyzed at different ages (2–14months) to estimate the
overlap with human post-mortem co-expression modules
during aging. We observed specific overlaps with distinct
disease processes and molecular pathways at different
ages for the APOE4 KI and Trem2*R47H mouse
models. At an early age (2–5 months), male APOE4 KI
and Trem2*R47H mice showed strong negative correla-
tions (p < 0.05, Pearson’s correlation coefficient < − 0.3)
with human co-expression modules in Consensus
Cluster E that are enriched for transcripts associated
with organelle biogenesis and cellular stress response

Fig. 4 Time-course correlation analysis between the 5xFAD mouse model and 30 human co-expression modules using the NanoString Mouse AD
panel. a The 5xFAD mouse model shows a significant correlation with functionally distinct AMP-AD co-expression modules that correspond to
previously reported phenotypes from by Oakley et al. [15] and Landel et al. [16]. Circles correspond to significant (p < 0.05) positive (blue) and
negative (red) Pearson’s correlation coefficients for gene expression changes in 5xFAD mice (log fold change of strain minus age matched B6
mice) and human disease (log fold change for cases minus controls). Correlations are based on the comparison of mouse NanoString data to
human RNA-seq expression data from the three AMP-AD cohorts for seven brain regions. Human co-expression modules are ordered into
Consensus Clusters A-E [9] describing major sources of AD-related alterations in transcriptional states across independent studies and brain
regions. Consensus clusters are annotated based on the most significantly enriched and non-redundant Reactome pathway terms (Supplemental
Tables S1, S2). b Reactome pathway enrichment analysis for multiple time points (1 month to 12 months) implicates multiple immune and stress-
related processes in the response to amyloid deposition in the course of aging within the 5xFAD mouse model
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pathways in multiple brain regions (Fig. 5a). Further-
more, Trem2*R47H male mice showed a significantly
negative association (p < 0.05, Pearson’s correlation co-
efficient < − 0.2) with immune related human modules
in the superiortemporal gyrus, the inferiorfrontal gyrus,
cerebellum and prefrontal cortex (Fig. 5a). This effect
becomes more pronounced later in development, between
six and 14months, when the negative correlation with hu-
man immune modules is also observed in Trem2*R47H
female mice. During mid-life, (6–9months old age group),
we observed an age-dependent effect for the APOE4 KI
mouse in which human neuronal modules in Consensus
Cluster C start to become positively correlated with the
corresponding human expression modules (Fig. 5a). Inter-
estingly, neuronal co-expression modules which are
associated with synaptic signaling appear to be positively
correlated with APOE4 KI, but not Trem2*R47H mice in
an age dependent manner. This up-regulation of genes
associated with synaptic signaling and a decrease of
transcripts enriched for cell cycle, RNA non-mediated
decay, myelination and glial development in aged mice
was consistent for multiple brain regions and across three
independent human AD cohorts. When compared to
APOE4 KI mice, Trem2*R47H mice showed an age
dependent decrease in genes associated with the immune
response in several AMP-AD modules which is not ob-
served for APOE4 KI mice (Fig. 5a). Notably, the APOE4
KI/Trem2*R47H mice showed characteristics of both sin-
gle variant mouse models. At an early age, an overlap with
both neuronal and immune associated human modules is
observed and becomes more pronounced during aging.

Differential expression and gene set enrichment analysis
In order to relate the human co-expression modules to
disease associated genes and pathways, we performed
differential expression (DE) analysis for the three novel
mouse models and the 5xFAD mouse. Each mouse
model was compared to the B6 control to assess the
overall transcriptomic response and the differences in
DE genes across models. Both the APOE4 KI and the
APOE4 KI/Trem2*R47H models showed a moderate
number of DE genes compared to B6 mice (< 100) at
mid-life (6–9 months) while the number of DE is smaller
(< 20) late in life. Early in life (2–5months), only one
gene was found to be DE in both the humanized APOE4
KI and the APOE4 KI/Trem2*R47H model (Tables S5,
S6). We observed a significant decrease of the mouse
Apoe gene (adjusted FDR p = 1.78 × 10− 69, logFC > −
3.5) reflecting that it was replaced by the human version.
The Trem2*R47H model shows mostly down-regulated
genes across all age groups, many of which are up-
regulated in 5xFAD mice. While microglia related genes,
including Tyrobp, Trem2, and complement components
C1qa, C1qb, C1qc are highly up-regulated in 5xFAD mice,

these genes are down-regulated in the Trem2*R47H model
(Table S6). To elucidate the role of these immune related
disease genes on the pathway level, gene set enrichment
analysis (GSEA) was performed for the four mouse models
and resulting pathways were compared to the human
AMP-AD data. GSEA revealed multiple immune associ-
ated pathways up-regulated in 5xFAD mice when com-
pared to B6 mice. The strongest association was observed
in aged mice (10–14months) where three immune related
pathways (phagosome, Chagas disease, osteoclast differen-
tiation) are significantly up-regulated (adjusted Benjamini-
Hochberg p < 0.05) in the 5xFAD model. These pathways,
which were also up-regulated in multiple brain regions
from independent AMP-AD cohorts (cerebellum, superior
temporal gyrus, temporal cortex), were down-regulated in
the Trem2*R47H model (Figure S2). Notably, this neuro-
protective effect of the Trem2*R47H allele was dampened
in the presence of APOE4 on the APOE4 KI/Trem2*R47H
background, which did not show any significant associa-
tions with immune pathways (Figure S2). To follow up on
this antagonistic effect, pathway enrichment analysis for
differentially expressed genes between APOE4 KI and
Trem2*R47H mice was performed using both the Reac-
tome [18] and WikiPathway knowledge pathway databases.
Multiple pathways linked to immune function and specific-
ally complement activation were significantly enriched
(FDR adjusted p < 0.05) for genes showing opposite expres-
sion patterns in both mouse models late in life (10–14
months) (Fig. 5b). Among the genes that contribute signifi-
cantly to this pathway enrichment were three members of
the complement complex 1q (C1q), namely C1qa, C1qb,
and C1qc that were also found to be up-regulated in the
amyloidogenic 5xFAD model. These genes encode for the
C1q complex and were significantly decreased in both the
Trem2*R47H and APOE4 KI/Trem2*R47H model when
compared to the APOE4 KI model (Fig. 5c, Table S7).
This is in line with a recent study that linked the
decrease in synaptic damage and vulnerability in a
humanized Trem2*R47H tauopathy mouse model to re-
duced C1q expression [19]. Moreover, C1q accumula-
tion had been shown to be drastically increased in
synapses of APOE4 KI mice, when compared to APOE3
KI mice suggesting an important role of C1q in enhan-
cing synaptic vulnerability to classical-complement-
cascade mediated neurodegeneration [20]. Furthermore,
expression of the C1q complex is critical for microglia
function. Immune pathways up-regulated in 5xFAD
mice and down-regulated in our Trem2*R47H model
harbor multiple important genes (Tyrobp, Trem2, Ctss,
and Apoe) linked to the activation of disease associated
microglia (DAM). In order to further characterize the
role of DAM genes, we compared DAM expression
signatures based on recently published data single-cell
transcriptomic data [21] (Figure S3). The expression
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Fig. 5 (See legend on next page.)
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signatures of 21 DAM associated genes on the Nano-
String panel supported an increased expression of
DAM associated genes in the 5xFAD mice compared to
B6 late in life (10-14months) (Figure S3). This increased
expression of DAM genes was absent in the APOE4 and
Trem2 models when compared to age-matched B6 mice.

Comparison between nCounter mouse AD panel and
RNA-Seq data
To assess the validity of the novel Mouse AD panel
across transcriptomic platforms, we compared the
results from the nCounter platform to RNA-Seq data for
the same 137 mouse brain samples from three novel
LOAD models carrying APOE4 and TREM2*R47H
alleles for which both RNA-Seq and NanoString data
was available. A correlation analysis was performed to
compare the expression of the 770 NanoString probes
across co-expression modules with RNA-Seq transcript
expression for all ages, highlighting the different LOAD
mouse models as independent variables (Fig. 6). For the
direct comparison, between the 770 NanoString probes
with corresponding RNA-Seq transcripts, a similar range
of correlation coefficients between human data and the
three mouse models was observed (Fig. 6a). Overall, the
correlation between the RNA-Seq and NanoString plat-
forms were high across all age groups (Pearson’s correl-
ation coefficients: 0.65–0.69) when comparing the subset
of 760 key transcripts and 10 housekeeping transcripts
across platforms. This demonstrates that the novel
NanoString panel, despite the limited number of key
custom probes, can achieve similar results when com-
pared to high-throughput RNA-Seq data. Furthermore,
the alignment of human and mouse modules based on
the expression of all genes within each modules showed
a weaker range of correlations when compared to tran-
scripts covered by the 770 NanoString probes (Fig. 6b).
Overall, we found strong and significant correlations
between the results. Notably, these correlations generally
increased with mouse age, suggesting that the human
relevance of the models is increasing with age and that
this relevance is captured well by both the NanoString
and RNA-Seq platforms (Fig. 6b). A mild correlation at
around 3 months of age (Pearson’s correlation coeffi-
cient: 0.39) increased to a moderate correlation at 12

months of age (Pearson’s correlation coefficient: 0.51).
Furthermore, we observed a high correlation of log
count values for the majority of NanoString probes when
compared to log TPM transcript ratios from RNA-Seq
data. The majority of the 770 measured NanoString
probes (716/770 probes, 93%) were positively correlated
with RNA-Seq transcripts (Figure S4). In order to test
whether noise introduced by highly variable transcripts
affects the correlation between NanoString probes and
RNA-Seq transcripts, Pearson’s correlation coefficients
and variance in RNA-Seq expression across 137 samples
were compared. There was no significant trend indicat-
ing an effect of highly variable transcripts on the overall
correlation coefficients between transcripts measured by
RNA-Seq and NanoString (Figure S4).

Discussion
Here, we describe a novel systems biology approach to
rapidly assess disease relevance for three novel mouse
models carrying two human risk variants, strongly
associated with LOAD. The nCounter Mouse AD gene
expression panel was designed to align human brain
transcriptome data covering 30 co-expression modules.
Cross-species comparison of human and mouse revealed
that immune associated co-expression modules which
harbor genes that have recently diverged in sequence
were more likely to be lowly expressed or absent at the
transcript level in brains from 6months old B6 mice. In
contrast, neuronal modules containing genes with a
lower degree of sequence divergence between both spe-
cies were more likely to be highly and constitutively
expressed in the mouse brain when compared to the
remaining co-expression modules. This is in line with
evidence from multiple studies highlighting that con-
served neuronal process in the brain are under strong
purifying selection while immune related genes are more
likely to diverge in function and expression patterns
across species [22, 23]. By using our prioritization
approach, we selected for key mouse genes targeting a
subset of highly co-expressed human genes. This subset
of genes on the NanoString panel showed overall lower
levels of sequence divergence compared to human genes
and higher expression levels in the mouse brain,

(See figure on previous page.)
Fig. 5 Correlation analysis between three novel LOAD mouse models and human co-expression modules reveals age-related changes in immune
function. a Correlation analysis highlights age-related changes in Trem2*R47H, APOE4 KI and APOE4 KI/Trem2*R47H mice. Circles correspond to
significant (p < 0.05) positive (blue) and negative (red) Pearson’s correlation coefficients for gene expression changes in mice associated with
distinct human co-expression modules. This includes multiple modules linked to immune function (Consensus Cluster B) and stress response
(Consensus Cluster E). b Pathway analysis for the Reactome and WikiPathway resources highlights a significant enrichment (FDR adjusted p <
0.05) of pathways involved in complement activation in both older (10–14 months) APOE4 KI and Trem2*R47H mice. c Genes encoding for
complement component C1q show an antagonistic transcriptional effect between the Trem2*R47H and APOE4 KI/Trem2*R47H mice when
compared to the humanized APOE4 knock-in model (*denotes FDR adjusted p < 0.05)
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reducing potential noise introduced by lowly expressed
transcripts across expression modules.
Cross-platform comparison between the novel Mouse

AD panel and RNA-Seq data revealed a strong correlation
between mouse gene expression changes independent of
platform related effects. Notably, the correlation between
nCounter probe and RNA-Seq transcript expression with
human co-expression modules was highest in aged mice
older than 12months. This age-dependent overlap might
be expected due to the late-onset nature of Alzheimer’s
disease resulting in an increased number of highly co-
expressed genes in aged mice carrying human LOAD risk
variants. In addition, the strongest correlation between
human and mouse module signatures was observed when
using the subset of 770 transcripts on the NanoString
panel. This highlights that assessment of key genes in the
brain, contributing highly to module expression, can im-
prove the characterization of novel LOAD mouse models
and their alignment with specific human co-expression
modules.
The time-course analysis of the well-established

5xFAD mouse model using our novel panel revealed a

significant overlap in transcriptional signatures with
several human co-expression modules from distinct
brain regions during aging. Several hallmark features of
the 5xFAD model, such as the increased cellular stress
response after early amyloid deposition, correlated well
with human AMP-AD modules enriched for stress re-
sponsive transcripts. In addition, an age-related increase
in several key inflammatory pathways and processes
following more severe amyloid pathology was observed
in 5xFAD mice. These findings highlighted that aged
5xFAD mice closely resemble pro-inflammatory transcrip-
tional signatures of post-mortem brain samples from de-
ceased LOAD patients. Interestingly, novel LOAD mouse
models showed concordance with distinct human co-
expression modules, reflecting a different transcriptional
response driven by the human APOE and TREM2 associ-
ated LOAD risk variants. The strong negative correlation
between the Trem2*R47H knock-in mice and immune
related human co-expression highlights the important role
of the LOAD associated TREM2 R47H variant in Alzhei-
mer’s related immune processes. This effect, which was
reproduced across co-expression modules from multiple

Fig. 6 Platform comparison of how the Mouse AD Panel and RNA-Seq each correlate with the AMP-AD modules. Correlation coefficients for
human AMP-AD co-expression modules and gene expression profiles derived from the RNA-Seq (x-axis), and the NanoString Mouse AD Panel for
the same mouse samples (y-axis). Both data types were obtained from 137 samples, including three different ages and three mouse models
carrying LOAD risk variants. a Strong positive correlations (p < 2.2 × 10− 16) were observed across all ages and samples combined when
comparing expression of the 770 transcripts on the NanoString panel. b The correlation between NanoString and RNA-Seq expression analysis
decreased overall when comparing all module transcripts measured by RNA-Seq to the subset of 770 probes on the NanoString panel. However,
an age specific effect was observed for the mouse transcripts in which correlation with human co-expression modules increased with age (3–5
months p = 4.39 × 10− 8, 7–9 months p = 2.35 × 10− 8, 12–14months p = 2.75 × 10− 13)
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human brain regions (cerebellum, frontal cortex, temporal
gyrus, frontal gyrus, frontal pole), was inverted in the
presence of a high amyloid burden in the 5xFAD model.
Immune related pathways containing genes linked to
microglia activation were significantly increased in 5xFAD
mice and decreased in Trem2*R47H mice. Interestingly,
this inflammatory response was partially restored in the
presence of APOE4 allele on the APOE4 KI/Trem2*R47H
background suggesting an interaction between the two
LOAD risk alleles. Pathway and differential gene expres-
sion analysis revealed antagonistic expression signatures
between APOE4 KI and Trem2*R47H mice linked to the
activation of the classical complement component through
C1q members (C1qa, C1qb, C1qc). C1q protein accumu-
lates at senescent synapses in the course of normal brain
aging making them more vulnerable to complement
mediated neurodegeneration. A recent study showed that
expressing the R47H risk allele in a humanized Trem2
mouse model lowers the expression of C1q at synapses
which in turn protects them from damage in the setting of
a tauopathy mouse model [19]. This is in line with multiple
studies which showed that the profound loss of synapses at
the early stages of AD can be prevented by blocking activa-
tion of the complement cascade through C1q depletion in
the mouse [24, 25]. In contrast, the APOE4 isoform in-
creases C1q accumulation at synapses making them more
vulnerable to degeneration when compared to the APOE2
and APOE3 isoforms in a set of APOE KI models [20].
However, C1q accumulation at synapses alone might not
be sufficient to trigger synaptic loss in the aging brain.
Other factors mediated by the Trem2 R47H and APOE4
risk alleles may activate the neuroinflammatory cascade
that leads to age-related neurodegeneration which will
require further studies in these novel LOAD models.
Furthermore, a strong negative correlation between co-
expression modules associated with cell cycle and DNA re-
pair was observed for the mouse APOE4 KI model. This
overlap with human late-onset co-expression signatures
early in life was observed for a number of different brain
regions and is absent in Trem2*R47H knock-in mice. Fur-
thermore, aged APOE4 KI mice show a strong overlap with
several human neuronal co-expression modules enriched
for genes that play an important role in synaptic signaling
and myelination. Although, APOE4 KI mice lack a clear
neurodegenerative phenotype, this age dependent shift
in co-expression patterns associated with core LOAD
pathologies points to an increased susceptibility to
cognitive decline in aged mice. This is in line with sev-
eral studies which have shown that cognitive deficits in
APOE4 transgenic mice develop late in life [26, 27].
Taken together, these results suggest that correlating
gene expression signatures in LOAD and FAD mouse
models to disease-associated AMP-AD modules can
identify transcriptional disruptions relevant to human

disease, even when the models are insufficiently ad-
vanced to exhibit full LOAD pathology. Assessing the
effects of individual and combinations of LOAD variants
in mouse models in this way can potentially separate the
causal co-expression modules that drive LOAD pathology
through genetic risk factors from modules that respond to
established pathology. Furthermore, staging such in vivo
models over a lifetime can determine the order of
events, including microglia activation and, ultimately,
neuronal loss observed in LOAD patients. The Mouse
AD Panel described here provides an efficient plat-
form to detect these events.

Limitations of the approach
Albeit being an excellent resource for characterizing mo-
lecular pathways and key drivers of disease, co-expression
modules based on human post-mortem brain data have
several limitations. As end stage measures, they might not
reflect changes that occur early in disease pathogenesis. For
this reason, we were unable to devise age-specific mouse
panels that could be most informative at specific disease
stages. However, as mouse models improve and are charac-
terized at multiple ages, early transcriptomic indicators of
LOAD might motivate additional panels correspond-
ing to stages of pathogenesis. In addition, although a
high concordance was observed across brain regions
for the 30 modules, they might not cover individual
or region-specific differences in patients in response
to amyloid and tau pathology [9]. Furthermore, we
used brain homogenates from our mouse models for
the transcript comparison with different human brain
regions in this study. Dissection of mouse brain re-
gions to match the human studies might further improve
the observed co-expression module correlations.

Methods
AMP-AD post-mortem brain cohorts and gene co-
expression modules
Data on the 30 human AMP-AD co-expression modules
was obtained from the Synapse data repository (https://
www.synapse.org/#!Synapse:syn11932957/tables/; Synap-
seID: syn11932957). The modules derive from three inde-
pendent LOAD cohorts, including 700 samples from the
ROSMAP cohort, 300 samples from the Mount Sinai Brain
bank and 270 samples from the Mayo cohort. Details on
post-mortem brain sample collection, tissue and RNA
preparation, sequencing, and sample QC can be found in
previously published work related to each cohort [12–14].
A detailed description on how co-expression modules were
identified can be found in the recent study that identified
the harmonized human co-expression modules as part of
transcriptome wide ADmeta-analysis [9]. Briefly, Wan, et al.
performed library normalization and covariate adjustments
for each human study separately using fixed/mixed effects
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modeling to account for batch effects. Among the 2978
AMP-AD modules identified across all tissues (DOI:
https://doi.org/10.7303/syn10309369.1), 660 modules
were selected by Wan, et al. which showed an enrich-
ment for at least one AD-specific differential expressed
gene set from the meta-analysis (DOI:https://doi.org/10.
7303/syn11914606) in cases compared to controls. Lastly,
the edge betweenness graph clustering method was applied
to identify 30 aggregate modules that are not only differen-
tially expressed but are also replicated across multiple inde-
pendent co-expression module algorithms [9]. Among the
30 aggregate co-expression modules, five consensus clus-
ters have been described by Wan, et al. [9]. These consen-
sus clusters consist of a subset of modules which are
associated with similar AD related changes across the mul-
tiple studies and brain regions. Here, we used Reactome
pathway (https://reactome.org/) enrichment analysis to
identify specific biological themes across these five consen-
sus clusters. A hypergeometric model, implemented in the
clusterProfiler R package [28], was used to assess whether
the number of selected genes associated within each set of
AMP-AD modules defining a consensus cluster was larger
than expected. All p-values were calculated based the
hypergeometric model [29]. Pathways were ranked based
on their Bonferroni corrected p-values to account for mul-
tiple testing. Finally, consensus clusters were annotated
based on the highest ranked and non-overlapping term for
each functionally distinct cluster.

Selection of NanoString probes for the nCounter mouse
AD panel
Since NanoString gene expression panels are comprised of
770 probes with the option to customize 30 additional
probes, we developed a formal prioritization procedure to
identify the most representative genes and ensure broadest
coverage across all modules (Fig. 1). Expression and tran-
script annotations for the 30 human co-expression modules
were obtained via the AMP-AD knowledge portal (www.
synapse.org/#!Synapse:syn11870970/tables/). To prioritize
probe targets for the novel Mouse AD panel, human genes
were ranked within each of the human AMP-AD co-
expression modules based on their percentage of variation
explaining the overall module behavior. First, we calculated
a gene ranking score by multiplying correlations of tran-
scripts with the percentage of variation explained by the
first five principal components within each of the aggre-
gated human AMP-AD modules. Secondly, the sums of the
resulting gene scores for the first five principal components
were calculated and converted to absolute values in order
to rank highly positive or negative correlated transcripts
within each human co-expression module. As a next step,
only human transcripts with corresponding one-to-one
mouse orthologous genes that are expressed in whole-brain
tissue samples from six-month-old B6 mice were retained

for downstream prioritization. While this filter risks exclud-
ing very few genes (6/760, < 1%) that may only be expressed
at an advanced age, we maintained high representation of
each human LOAD module. Disease-relevant effects are
therefore robustly captured even if a few specific genes are
omitted, as no module was determined to have more than
five unexpressed genes in six-month-old mice. Further-
more, we included information on drug targets for LOAD
from the AMP-AD Agora platform (agora.ampadportal.
org), as nominated by members of the AMP-AD consor-
tium (https://doi.org/10.7303/syn2580853). A total of 30
AMP-AD drug discovery targets that were highly ranked in
our gene ranking approach and nominated by multiple
AMP-AD groups were included on the panel (Table S3).
Finally, ten housekeeping genes (AARS, ASB7, CCDC127,
CNOT10, CSNK2A2, FAM104A, LARS, MTO1, SUPT7L,
TADA2B) were included on the panel as internal standard
references for probe normalization. This resulted in a total
of 770 proposed NanoString probes, targeting the top
5% of ranked genes for each human AMP-AD expres-
sion module.

nCounter mouse AD panel probe design
The probe design process breaks a transcript’s sequence
down into 100 nucleotide (nt) windows to profile for
probe characteristics, with the final goal of choosing the
optimal pair of adjacent probes to profile any given
target. Each window is profiled for intrinsic sequence
makeup – non-canonical bases, G/C content, inverted
and direct repeat regions, runs of poly-nucleotides, as
well as the predicted melting temperature (Tm) for each
potential probe-to-target interaction. The window is
then divided in half to generate a probe pair, wherein
each probe is thermodynamically tuned to determine the
optimal probe length (ranging in size from 35 to 50 nt)
within the 100 nt target region. Next, a cross-hybridization
score is calculated for each probe region, using BLAST [30]
to identify potential off-target interactions. In addition to a
cross-hybridization score, a splice isoform coverage score
was generated to identify transcripts that are isoforms of
the gene intended to be targeted by the probe in question.
Once all of this information is compiled, the final probe
is then selected by identifying the candidate with the
optimal splice form coverage, cross-hybridization score,
and thermodynamic profile.

In-silico panel QC for intramolecular interactions
To ensure that there are no potential intramolecular
probe-probe interactions that could cause elevated back-
ground for any individual probe pair, a stringent inter-
molecular screen is run on every collection of probes
assembled into a panel. A sensitive algorithm was used
that calculates both the Tm and the free energy potential
of interactions between every possible pair of probes in
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the project. If two probes conflict in a way that would
likely cause background based on this calculation, an
alternative probe is selected for one of the targets and
the screening is re-run until there are no known conflicts.

Mouse models
All experiments involving mice (Supplemental Table S5)
were conducted in accordance with policies and proce-
dures described in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health
and were approved by the Institutional Animal Care and
Use Committee at The Jackson Laboratory. All mice
were bred and housed in a 12/12 h light/dark cycle. All
experiments were performed on a unified genetic back-
ground (C57BL/6 J).

Whole-genome sequencing
Whole-genome sequencing was performed by Novogene
in Bejing, China for three founders of the APOE4 KI/
Trem2*R47H strain to exclude potential off-target effects
in loci that were not targeted. Briefly, DNA was extracted
from spleen and library preparation was performed using
the KAPA HyperPrep sample preparation kit (KAPA Bio-
systems, Wilmington, MA, USA). Libraries were analyzed
using a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA), with the DNA 2100 kit. Sequencing was
performed on a HiSeq X sequencer according to the man-
ufacturer’s guidelines using 2x150bp paired-end reads.
Reads were quality trimmed and filtered using the NGS
QC toolkit. The resulting high-quality reads were aligned
to the mm10 release of the mouse reference genome using
BWA v0.5.10 [31]. SNPs and indels were called using the
GATK tool suite v2.7 [32]. Finally, all variants were anno-
tated using the SnpEff software [33]. All variants with a
potential deleterious effect (missense, nonsense, splice-
site, frame-shift) on the protein level are listed in Table S8
for three founders of the APOE4 KI/Trem2*R47H. Figure
S5 gives an overview of deleterious variants shared across
these three founders. Only three genes of which two are
annotated as predicted genes (Gm11168, Gm10717) and
one as an olfactory receptor (Vmn2r115) were identified
that share private, deleterious variants in our models.
Expression levels of these genes in the brain were below
our cut-off criteria of 1 transcript per million reads.

Mouse brain sample collection
Upon arrival at the terminal endpoint for each aged mouse
cohort, individual animals were weighed prior to intraperi-
toneal administration of ketamine (100mg/kg) and xylazine
(10mg/kg). First confirming deep anesthetization via toe
pinch, an incision was made along the midline to expose
the thorax and abdomen followed by removal of the lateral
borders of the diaphragm and ribcage revealed the heart. A
small cut was placed in the right atrium to relieve pressure

from the vascular system before transcardially perfusing the
animal with 1XPBS via injection into the left ventricle. With
the vascular system cleared, the entire brain was carefully
removed and weighed before hemisecting along the
midsagittal plane. Hemispheres were immediately placed in
a cryovial and snap-frozen on dry ice. Brain samples were
stored at − 80 °C until RNA extraction was performed.

RNA sample preparation
RNA was isolated from tissue using the MagMAX
mirVana Total RNA Isolation Kit (ThermoFisher) and
the KingFisher Flex purification system (ThermoFisher,
Waltham, MA). Brain hemispheres were thawed to 0 °C
and were lysed and homogenized in TRIzol Reagent
(ThermoFisher). After the addition of chloroform, the
RNA-containing aqueous layer was removed for RNA
isolation according to the manufacturer’s protocol, be-
ginning with the RNA bead binding step. RNA concen-
tration and quality were assessed using the Nanodrop
2000 spectrophotometer (Thermo Scientific) and the
RNA Total RNA Nano assay (Agilent Technologies,
Santa Clara, CA).

RNAseq library preparation and data collection
Sequencing libraries were constructed using TruSeq
DNA V2 (Illumina, San Diego, CA) sample prep kits and
quantified using qPCR (Kapa Biosystems, Wilmington,
MA). The mRNA was fragmented, and double-stranded
cDNA was generated by random priming. The ends of
the fragmented DNA were converted into phosphory-
lated blunt ends. An ‘A’ base was added to the 3′ ends.
Illumina®-specific adaptors were ligated to the DNA
fragments. Using magnetic bead technology, the ligated
fragments were size-selected and then a final PCR was
performed to enrich the adapter-modified DNA fragments,
since only the DNA fragments with adaptors at both ends
will amplify. Libraries were pooled and sequenced by the
Genome Technologies core facility at The Jackson Labora-
tory. Samples were sequenced on Illumina HiSeq 4000
using HiSeq 3000/4000 SBS Kit reagents (Illumina), target-
ing 30 million read pairs per sample. Samples were split
across multiple lanes when being run on the Illumina
HiSeq, once the data was received the samples were
concatenated to have a single file for paired-end analysis.

NanoString gene expression panel and data collection
The NanoString Mouse AD gene expression panel was
used for gene expression profiling on the nCounter
platform (NanoString, Seattle, WA) as described by the
manufacturer. nSolver software was used for analysis of
NanoString gene expression values. Normalized log
intensity and raw gene expression data can be accessed
via NCBI GEO (Accession Number: GSE141509).
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Normalization of NanoString data
Normalization was done by dividing counts within a lane
by geometric mean of the housekeeping genes from the
same lane. For the downstream analysis, counts were
log-transformed from normalized count values.

Mouse-human expression comparison
First, we performed differential gene expression analysis
for each mouse model and sex using the voom-limma
[34] package in R. Secondly, we computed correlation
between changes in expression (log fold change) for each
gene in a given module with each mouse model, sex and
age. Correlation coefficients were computed using cor.t-
est function built in R as:

cor:test LogFC hð Þ;LogFC mð Þð Þ ð1Þ

where LogFC(h) is the log fold change in transcript
expression of human AD patients compared to control
patients and LogFC(m) is the log fold change in expres-
sion of mouse transcripts compare to control mouse
models. LogFC values for human transcripts were ob-
tained via the AMP-AD knowledge portal (https://www.
synapse.org/#!Synapse:syn11180450).

Differential expression, Gene set and pathway enrichment
analysis
Differential gene expression analysis was performed
using the limma package in the R software environment
[34] for all analyzed mouse strains. Each model at each
individual time point was compared to age-matched B6
wild type mice. In order to identify significantly enriched
pathways across mouse models and human brain
regions, gene set enrichment analysis was used based on
the method proposed by Subramanian, et. al [35] as im-
planted in the clusterProfiler package for the KEGG
pathway library. Briefly, human data with expression log
fold changes for the seven AMP-AD brain regions were
downloaded from Synapse (https://www.synapse.org/
#!Synapse:syn14237651). We filtered to orthologous
genes on the NanoString Mouse AD panel and KEGG
pathway enrichment was performed for each brain region
independently to identify significantly up and down-
regulated gene sets. For the mouse data, differential ex-
pression analysis between each mouse model and B6
controls was performed to obtain a list of fold changes
highlighting genes that are either up or down-regulated in
the presence of the genetic risk variant. Enrichment scores
for all significantly associated KEGG pathways were com-
puted to compare relative expression on the pathway level
between post-mortem brain samples and the four mouse
models. Biological pathway enrichment analysis was per-
formed using the clusterprofiler [28] package within the R
software envirionment for the Reactome [18] and

WikiPathways (wikipathways.org) knowledge bases. Path-
ways were determined to be significant after multiple test-
ing correction (FDR adjusted p < 0.05).

Quality control of RNA-Seq data and read alignment
Sequence quality of reads was assessed using FastQC
(v0.11.3, Babraham). Low-quality bases were trimmed
from sequencing reads using Trimmomatic (v0.33) [36].
After trimming, reads of length longer than 36 bases
were retained. The average quality score at each base
position was greater than 30 and sequencing depth were
in range of 60–120 million reads. All RNA-Seq samples
were mapped to the mouse genome (mm10 reference,
build 38, ENSEMBL) using ultrafast RNA-Seq aligner
STAR [37] (v2.5.3). The genes annotated for mm10
(GRCm38) were quantified in two ways: Transcripts per
million (TPM) using RSEM (v1.2.31) and raw read
counts using HTSeq-count (v0.8.0).

Mouse-human co-expression module conservation
Genomic information on orthologous groups was obtained
via the latest ENSEMBL build for human genome version
GRCh38. All orthologous relationships were downloaded via
BioMart [38] (biomart.org). dN/dS statistics were retrieved
for all orthologous gene pairs with a one-to-one relationship
between human and mouse. dN/dS values are calculated as
the ratio of nonsynonymous substitutions to the number of
synonymous substitutions in protein coding genes. The dN/
dS values in ENSEMBL were calculated based on the latest
version of the codeml (http://abacus.gene.ucl.ac.uk/software/
paml.html) package using standard parameters (ensembl.org/
info/genome/compara/homology_method.html) [39].

Conclusions
Taken together, we show that the novel nCounter Mouse
AD gene expression panel offers a rapid and cost-effective
approach to assess disease relevance of novel LOAD
mouse models. Furthermore, this approach based on gene
co-expression signatures offers a high level of reproduci-
bility and will supplement methods solely based on differ-
ential expression analysis. Ultimately, this will help us to
better understand the relevance of novel LOAD mouse
models in regard to specific pathways and processes con-
tributing to late-onset Alzheimer’s disease.
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