789 research outputs found

    Genetically determined height and coronary artery disease.

    Get PDF
    BACKGROUND: The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS: We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. RESULTS: We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. CONCLUSIONS: There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.)

    Nasopharyngeal Myoepithelial Carcinoma Mimicking Nasopharyngeal Carcinoma

    Get PDF
    AbstractMyoepithelial carcinoma (malignant myoepithelioma) (MC) is a rare tumor, defined as a malignant salivary neoplasm composed almost exclusively of tumor cells with myoepithelial differentiation. It can arise in unusual location sites, such as the nasopharynx, and may be difficult to approach. Nasopharyngeal MC can sometimes present as a nasopharyngeal mass which may be mistaken for primary nasopharyngeal carcinoma (NPC). The treatment strategy for nasopharyngeal MC is different from NPC, and maximal surgical resection of the main lesion is still considered as the mainstay of therapy. Herein we present a 32-year-old man with a nasopharyngeal mass which was initially mistaken as NPC, and which was later confirmed as MC after a comprehensive review of the pathology

    Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society

    Get PDF
    AIMS: Homozygous familial hypercholesterolaemia (HoFH) is a rare life-threatening condition characterized by markedly elevated circulating levels of low-density lipoprotein cholesterol (LDL-C) and accelerated, premature atherosclerotic cardiovascular disease (ACVD). Given recent insights into the heterogeneity of genetic defects and clinical phenotype of HoFH, and the availability of new therapeutic options, this Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society (EAS) critically reviewed available data with the aim of providing clinical guidance for the recognition and management of HoFH. METHODS AND RESULTS: Early diagnosis of HoFH and prompt initiation of diet and lipid-lowering therapy are critical. Genetic testing may provide a definitive diagnosis, but if unavailable, markedly elevated LDL-C levels together with cutaneous or tendon xanthomas before 10 years, or untreated elevated LDL-C levels consistent with heterozygous FH in both parents, are suggestive of HoFH. We recommend that patients with suspected HoFH are promptly referred to specialist centres for a comprehensive ACVD evaluation and clinical management. Lifestyle intervention and maximal statin therapy are the mainstays of treatment, ideally started in the first year of life or at an initial diagnosis, often with ezetimibe and other lipid-modifying therapy. As patients rarely achieve LDL-C targets, adjunctive lipoprotein apheresis is recommended where available, preferably started by age 5 and no later than 8 years. The number of therapeutic approaches has increased following approval of lomitapide and mipomersen for HoFH. Given the severity of ACVD, we recommend regular follow-up, including Doppler echocardiographic evaluation of the heart and aorta annually, stress testing and, if available, computed tomography coronary angiography every 5 years, or less if deemed necessary. CONCLUSION: This EAS Consensus Panel highlights the need for early identification of HoFH patients, prompt referral to specialized centres, and early initiation of appropriate treatment. These recommendations offer guidance for a wide spectrum of clinicians who are often the first to identify patients with suspected HoFH

    Impact of statin therapy on coronary plaque composition: A systematic review and meta-analysis of virtual histology intravascular ultrasound studies

    Get PDF
    Background: Virtual histology intravascular ultrasound (VH-IVUS) imaging is an innovative tool for the morphological evaluation of coronary atherosclerosis. Evidence for the effects of statin therapy on VH-IVUS parameters have been inconclusive. Consequently, we performed a systematic review and meta-analysis to investigate the impact of statin therapy on plaque volume and its composition using VH-IVUS. Methods: The search included PubMed, Cochrane Library, Scopus and Embase (through 30 November 2014) to identify prospective studies investigating the effects of statin therapy on plaque volume and its composition using VH-IVUS. Results: We identified nine studies with 16 statin treatment arms and 830 participants. There was a significant effect of statin therapy in reducing plaque volume (standardized mean difference (SMD): -0.137, 95 % confidence interval (CI): -0.255, -0.019; P = 0.023), external elastic membrane volume (SMD: -0.097, 95 % CI: -0.183, -0.011; P = 0.027) but not lumen volume (SMD: -0.025, 95 % CI: -0.110, +0.061; P = 0.574). There was a significant reduction in fibrous plaque volume (SMD: -0.129, 95 % CI: -0.255, -0.003; P = 0.045) and an increase of dense calcium volume (SMD: +0.229, 95 % CI: +0.008, +0.450

    Association of High-Density Lipoprotein-Cholesterol Versus Apolipoprotein A-I With Risk of Coronary Heart Disease: The European Prospective Investigation Into Cancer-Norfolk Prospective Population Study, the Atherosclerosis Risk in Communities Study, and the Women's Health Study.

    Get PDF
    BACKGROUND: The contribution of apolipoprotein A-I (apoA-I) to coronary heart disease (CHD) risk stratification over and above high-density lipoprotein cholesterol (HDL-C) is unclear. We studied the associations between plasma levels of HDL-C and apoA-I, either alone or combined, with risk of CHD events and cardiovascular risk factors among apparently healthy men and women. METHODS AND RESULTS: HDL-C and apoA-I levels were measured among 17 661 participants of the EPIC (European Prospective Investigation into Cancer)-Norfolk prospective population study. Hazard ratios for CHD events and distributions of risk factors were calculated by quartiles of HDL-C and apoA-I. Results were validated using data from the ARIC (Atherosclerosis Risk in Communities) and WHS (Women's Health Study) cohorts, comprising 15 494 and 27 552 individuals, respectively. In EPIC-Norfolk, both HDL-C and apoA-I quartiles were strongly and inversely associated with CHD risk. Within HDL-C quartiles, higher apoA-I levels were not associated with lower CHD risk; in fact, CHD risk was higher within some HDL-C quartiles. ApoA-I levels were associated with higher levels of CHD risk factors: higher body mass index, HbA1c, non-HDL-C, triglycerides, apolipoprotein B, systolic blood pressure, and C-reactive protein, within fixed HDL-C quartiles. In contrast, HDL-C levels were consistently inversely associated with overall CHD risk and CHD risk factors within apoA-I quartiles (P<0.001). These findings were validated in the ARIC and WHS cohorts. CONCLUSIONS: Our findings demonstrate that apoA-I levels do not offer predictive information over and above HDL-C. In fact, within some HDL-C quartiles, higher apoA-I levels were associated with higher risk of CHD events, possibly because of the unexpected higher prevalence of cardiovascular risk factors in association with higher apoA-I levels. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00000479

    Segmental volvulus of the ileum without malrotation in an infant: A case report

    Get PDF
    AbstractIntestinal volvulus usually occur secondary to malrotation, and primary segmental volvulus has rarely been reported. A 12-month-old female infant presented with a 3-day history of excessive vomiting. An ultrasonography revealed a “whirlpool sign” in the right upper abdomen, suggesting small bowel volvulus with obstruction. Laparotomy revealed a twisted, viable loop of small bowel in the right upper abdomen, and abnormal adhesions were noted between the distal and mid ileum, with resulting mesenteric narrowing. Attempted mesenteric widening by dissection of the peritoneum overlying the adhesions failed, because of abnormal, taut mesenteric vessels. Subsequent resection of the involved segment cured the patient. Recurrent obstructive symptoms in an infant can be an atypical presentation of segmental volvulus, and segmental volvulus should be included in the differential diagnosis of such cases

    Inactivating Mutations in NPC1L1 and Protection from Coronary Heart Disease

    Get PDF
    Background Ezetimibe lowers plasma levels of low-density lipoprotein (LDL) cholesterol by inhibiting the activity of the Niemann–Pick C1-like 1 (NPC1L1) protein. However, whether such inhibition reduces the risk of coronary heart disease is not known. Human mutations that inactivate a gene encoding a drug target can mimic the action of an inhibitory drug and thus can be used to infer potential effects of that drug. Methods We sequenced the exons of NPC1L1 in 7364 patients with coronary heart disease and in 14,728 controls without such disease who were of European, African, or South Asian ancestry. We identified carriers of inactivating mutations (nonsense, splice-site, or frameshift mutations). In addition, we genotyped a specific inactivating mutation (p.Arg406X) in 22,590 patients with coronary heart disease and in 68,412 controls. We tested the association between the presence of an inactivating mutation and both plasma lipid levels and the risk of coronary heart disease. Results With sequencing, we identified 15 distinct NPC1L1 inactivating mutations; approximately 1 in every 650 persons was a heterozygous carrier for 1 of these mutations. Heterozygous carriers of NPC1L1 inactivating mutations had a mean LDL cholesterol level that was 12 mg per deciliter (0.31 mmol per liter) lower than that in noncarriers (P = 0.04). Carrier status was associated with a relative reduction of 53% in the risk of coronary heart disease (odds ratio for carriers, 0.47; 95% confidence interval, 0.25 to 0.87; P = 0.008). In total, only 11 of 29,954 patients with coronary heart disease had an inactivating mutation (carrier frequency, 0.04%) in contrast to 71 of 83,140 controls (carrier frequency, 0.09%). Conclusions Naturally occurring mutations that disrupt NPC1L1 function were found to be associated with reduced plasma LDL cholesterol levels and a reduced risk of coronary heart disease.National Human Genome Research Institute (U.S.) (Grant 5U54HG003067-11

    Exome Sequencing in Suspected Monogenic Dyslipidemias

    Get PDF
    Abstract BACKGROUND: -Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We utilized this technique in an attempt to identify novel genes underlying monogenic dyslipidemias. METHODS AND RESULTS: -We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein (LDL) cholesterol (after candidate gene sequencing excluded known genetic causes for high LDL cholesterol families) or high-density lipoprotein (HDL) cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual in order to account for their burden of common genetic variants known to influence lipid levels. In nine families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families despite follow-up analyses. We identified three factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease. CONCLUSIONS: -We identified the genetic basis of disease in nine of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore