1,526 research outputs found

    NASA Cold Land Processes Experiment (CLPX 2002/03): ground-based and near-surface meteorological observations

    Get PDF
    A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPXas well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters include air temperature, relative humidity, wind speed and direction, barometric pressure, short- and long-wave radiation, leaf wetness, snow depth, snow water content, snow and surface temperatures, volumetric soil-moisture content, soil temperature, precipitation, water vapor flux, carbon dioxide flux, and soil heat flux. The CLPX weather stations include 10 main meteorological towers, 1 tower within each of the nine intensive study areas (ISA) and one near the local scale observation site (LSOS); and 36 simplified towers, with one tower at each of the four corners of each of the nine ISAs, which measured a reduced set of parameters. An eddy covariance system within the North Park mesocell study area (MSA) collected a variety of additional parameters beyond the 10 standard CLPX tower components. Additional meteorological observations come from a variety of existing networks maintained by the U.S. Forest Service, U.S. Geological Survey, Natural Resource Conservation Service, and the Institute of Arctic and Alpine Research. Temporal coverage varies from station to station, but it is most concentrated during the 2002/ 03 winter season. These data are useful in local meteorological energy balance research and for model development and testing. These data can be accessed through the National Snow and Ice Data Center Web site

    Renal Function in Suckling and Fasting Pups of the Northern Elephant Seal

    Get PDF
    Elephant seals fast for prolonged periods without access to water. This is made possible, in part, by reductions in urine production. However, the mechanisms involved in reducing urine production are not understood. In this study, glomerular filtration rate (GFR) was measured in five northern elephant seal pups (Mirounga angustirostris) via the inulin clearance technique. Measurements were made during day 9 and day 18ā€“22 of nursing and the second and eighth week of the postweaning fast. Plasma aldosterone and cortisol concentrations, quantified by radioimmunoassay, were measured in eight other weanlings during the second and eighth week of the fast. Mean GFR was 79.3Ā±29.3 ml/min during the early suckling period and 78.2Ā±17.1, 89.8Ā±52.7, and 80.4Ā±12.2 ml/min during the late suckling, early fasting and late fasting periods, respectively. Differences between nursing and fasting were insignificant, possibly because reduced protein oxidation during suckling and rapid recruitment of protein for tissue synthesis obviated the need for postprandial hyperfiltration. Alternatively, maintenance of GFR during fasting may facilitate urea concentration by compensating for reductions in the fractional excretion of urea. It is further hypothesized that aldosterone is primarily responsible for mediating renal water reabsorption in this system

    WaterNet: the NASA Water Cycle Solutions Network

    Get PDF
    International audienceThis paper provides an over view of a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It discusses the concept of solutions networks focusing on the WaterNet and it invites EGU teams to join the in the initial stages of our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national and international needs. This paper seeks to invite EU scientific teams and water resource management teams to join our WaterNet Solutions Network

    Hormone and Metabolite Changes associated with Extended Breeding Fasts in Male Northern Elephant Seals (Mirounga Angustirostris)

    Get PDF
    We measured metabolic hormones and several key metabolites in breeding adult male northern elephant seals to examine the regulation of fuel metabolism during extended natural fasts of over 3 months associated with high levels of energy expenditure. Males were sampled twice, early and late in the fast, losing an average of 23% of body mass and 47% of adipose stores between measurements. Males exhibited metabolic homeostasis over the breeding fast with no changes in glucose, non-esterified fatty acids, or blood urea nitrogen. Ketoacids increased over the fast but were very low when compared to other fasting species. Changes within individuals in total triiodothyronine (tT3) were positively related to daily energy expenditure (DEE) and protein catabolism. Differences in levels of thyroid hormones relative to that observed in weaned pups and females suggest a greater deiodination of T4 to support the high DEE of breeding males. Relative levels of leptin and ghrelin were consistent with the suppression of appetite but a significant reduction in growth hormone across the fast was contrary to expectation in fasting mammals. The lack of the increase in cortisol during fasting found in conspecific weaned pups and lactating females may contribute to the ability of breeding males to spare protein despite high levels of energy expenditure. Together these findings reveal significant differences with conspecifics under varying nutrient demands, suggesting metabolic adaptation to extended high energy fasts

    Miniature grinder for solid specimens

    Get PDF
    Machine grinds fines to appropriate micron sizes with the least biological trauma and greatest degree of reproducibility. Device controls destruction of material so that recovery of microorganisms is as great as possible and protects operation and grinding products from exogenous contamination

    Food Stamps and Dependency: Disentangling the Short-term and Long-term Economic Effects of Food Stamp Receipt and Low Income for Young Mothers

    Get PDF
    The Food Stamp Program (FSP) remains one of the most widely used of all U.S. social safety net programs. While a substantial body of research has developed around the primary goals of the program- improving food access, nutrition, and health among lowincome families-less attention has been paid to the broader goals of hardship and poverty reduction. Using 38 years of data from the Panel Study of Income Dynamics, we examine several immediate and longer-term economic outcomes of early adult FSP participation for a sample of3,848 young mothers. While FSP participation is associated with some negative outcomes in the immediate future in areas including family income-to-needs and transfer income, such effects are substantially reduced or disappear over the long run. These results suggest that concerns about the adverse economic effects of assistance, based solely on short-term outcomes or outcomes measured at a single point in time, do not hold for the long run. We find no evidence that food stamp recipients in early motherhood are any more or less dependent on public assistance programs than other young mothers who have low income but do not use food stamps

    Differentiating tidal and groundwater dynamics from barrier island framework geology: Testing the utility of portable multifrequency electromagnetic induction profilers

    Get PDF
    Electromagnetic induction (EMI) techniques are becoming increasingly popular for near-surface coastal geophysical applications. However, few studies have explored the capabilities and limitations of portable multifrequency EMI profilers for mapping large-scale (101-102 km) barrier island hydrogeology. The purpose of this study is to investigate the influence of groundwater dynamics on apparent conductivity Ļƒa to separate the effects of hydrology and geology from the Ļƒa signal. Shorenormal and alongshore surveys were performed within a highly conductive barrier island/wind-tidal flat system at Padre Island National Seashore, Texas, USA. Assessments of instrument calibration and signal drift suggest that Ļƒa measurements are stable, but vary with height and location across the beach. Repeatability tests confirm Ļƒa values using different boom orientations collected during the same day are reproducible. Measurements over a 12 h tidal cycle suggest that there is a tide-dependent step response in sa, complicating data processing and interpretation. Shore-normal surveys across the barrier/wind-tidal flats show that Ļƒa is roughly negatively correlated with topography and these relationships can be used for characterizing different coastal habitats. For all surveys, Ļƒa increases with decreasing frequency. Alongshore surveys performed during different seasons and beach states reveal a high degree of variability in sa. Here, it is argued that surveys collected during dry conditions characterize the underlying framework geology, whereas these features are somewhat masked during wet conditions. Differences in EMI signals should be viewed in a relative sense rather than as absolute magnitudes. Small-scale heterogeneities are related to changing hydrology, whereas low-frequency signals at the broadest scales reveal variations in framework geology. Multiple surveys should be done at different times of the year and tidal states before geologic interpretations can confidently be made from EMI surveys in coastal environments. This strategy enables the geophysicist to separate the effects of hydrology and geology from the Ļƒa signal. Ā© 2016 Society of Exploration Geophysicists. All rights reserved

    A Study of Land Surface Processes Using Land Surface Models Over the Little River Experimental Watershed

    Get PDF
    Three different land surface models (Hydrological improvements to the Simplified version of the Simple Biosphere model (HySSiB), Noah model, and Community Land Model (CLM)) were simulated on the NASA Goddard Space Flight Centerā€™s Land Information System platform at 1-km resolution over the Little River Experimental Watershed, Georgia, and the simulated results were analyzed to address the local-scale land-atmosphere processes. All the three models simulated the soil moisture in space and time realistically. The Noah model produced higher soil moisture whereas the CLM got lower soil moisture with many dry down phases. CLM and HySSiB models were oversensitive to the atmospheric events. Different vertical discretizations of the model layers affected the soil moisture results in all the three models. The arithmetic model ensemble mean soil moisture performed reasonably well even at individual in-situ measurement sites. We found that different model schemes partitioned the incoming water and energy differently and hence produced different results for the water and energy budget parameters. In CLM, the energy and water budget parameters were very closely connected to the soil moisture (e.g., evaporation, latent, and sensible heat) change. HySSiB produced very high surface runoff and very low subsurface runoff. The Noah model did not produce much surface and subsurface runoff resulting in high surface soil moisture. We did not find much variability in Noah latent heat, sensible heat, and ground heat fluxes. From soil moisture data assimilation point of view, the mean bias removed Noah soil moisture was found to be better than other data sets

    Hydrologic Data Assimilation

    Get PDF

    Tapered whisker reservoir computing for real-time terrain identification-based navigation

    Get PDF
    This paper proposes a new method for real-time terrain recognition-based navigation for mobile robots. Mobile robots performing tasks in unstructured environments need to adapt their trajectories in real-time to achieve safe and efficient navigation in complex terrains. However, current methods largely depend on visual and IMU (inertial measurement units) that demand high computational resources for real-time applications. In this paper, a real-time terrain identification-based navigation method is proposed using an on-board tapered whisker-based reservoir computing system. The nonlinear dynamic response of the tapered whisker was investigated in various analytical and Finite Element Analysis frameworks to demonstrate its reservoir computing capabilities. Numerical simulations and experiments were cross-checked with each other to verify that whisker sensors can separate different frequency signals directly in the time domain and demonstrate the computational superiority of the proposed system, and that different whisker axis locations and motion velocities provide variable dynamical response information. Terrain surface-following experiments demonstrated that our system could accurately identify changes in the terrain in real-time and adjust its trajectory to stay on specific terrain
    • ā€¦
    corecore