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Tapered whisker reservoir 
computing for real‑time terrain 
identification‑based navigation
Zhenhua Yu 1*, S. M. Hadi Sadati 2, Shehara Perera 1, Helmut Hauser 3, Peter R. N. Childs 1 & 
Thrishantha Nanayakkara 1

This paper proposes a new method for real‑time terrain recognition‑based navigation for mobile 
robots. Mobile robots performing tasks in unstructured environments need to adapt their trajectories 
in real‑time to achieve safe and efficient navigation in complex terrains. However, current methods 
largely depend on visual and IMU (inertial measurement units) that demand high computational 
resources for real‑time applications. In this paper, a real‑time terrain identification‑based navigation 
method is proposed using an on‑board tapered whisker‑based reservoir computing system. The 
nonlinear dynamic response of the tapered whisker was investigated in various analytical and 
Finite Element Analysis frameworks to demonstrate its reservoir computing capabilities. Numerical 
simulations and experiments were cross‑checked with each other to verify that whisker sensors can 
separate different frequency signals directly in the time domain and demonstrate the computational 
superiority of the proposed system, and that different whisker axis locations and motion 
velocities provide variable dynamical response information. Terrain surface‑following experiments 
demonstrated that our system could accurately identify changes in the terrain in real‑time and adjust 
its trajectory to stay on specific terrain.

Terrain identification is an important fundamental function for autonomous mobile robots’ navigation and 
performing tasks such as auto-patrolling, automatic driving, and back-country rescue in extreme, unstructured 
environments. By real-time identifying of different terrain surfaces and perceiving terrain texture information, 
mobile robots can dynamically adjust their initial planning trajectory for safer and more efficient navigation. For 
that, a robot needs to be able to actively perceive the terrain accurately and quickly, with low computing cost in 
order to support real-time  applications1.

To achieve accurate recognition of terrain, convolutional neural network-based approaches have been widely 
proposed and investigated by using information from a single type of sensor or sensor fusion. Based on different 
sensing modalities, these methods can be classified into two main groups: exteroceptive-based2–4 and propri-
oceptive-based5,6. The most popular exteroceptive method is vision-based7, which enables robots to recognize 
different terrains in advance at longer distances to avoid unwanted consequences such as sinking into the soft 
sand. Pedro et al.8 proposed a stereo-based method to detect various sizes of obstacles for all-terrain environ-
ments exploiting their complementary properties with high detection accuracy. Other attempts have been made 
to address terrain classification using LIDAR data to help mobile robots operate safely in challenging off-road 
 environments9,10. Zhou et al.11 presented a self-supervised approach by employing both LIDAR and vision sens-
ing to identify terrain surfaces for robot autonomous navigation in a forest. Even though the above methods 
have achieved quite good results, their accuracy can be affected by the visual appearance of the terrains, due to 
changes in light intensity at different times, different visibility conditions (e.g., snow, smoke, fog), or different 
coverings (e.g., water, dirt, fallen leaves, snow) of the terrain.

To compensate for the limitations of vision-based terrain classification, various methods have been proposed 
to achieve high-accuracy terrain classification eliminating the effects of the terrain’s visual appearance by using 
proprioceptive information generated by the mobile robot’s dynamical contact with the terrain, such as the 
 vibration12,13, wheel-terrain  audio5,14, and tactile  signals15,16. These methods extract vibration feature signals 
to train neural networks for terrain classification by: (1). extracting time domain features directly in the time 
 domain15, (2). extracting frequency domain  features17 or power spectrum by Fourier  transform14, (3). other statis-
tical  methods12,16, which have reported good performance in several environments. However, the proprioceptive 
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features collected for terrain classification are sometimes susceptible to robot body self-vibration, which often 
affects the robot’s perceptual accuracy.

While these ongoing research areas have demonstrated that each modality is effective in identifying different 
terrain types, these methods mentioned above still suffer from classification and ambiguity. Therefore, terrain 
classification methods based on multi-sensor information fusion have been investigated. These methods can 
be divided into two main categories: exteroceptive-exteroceptive sensor  fusion18,19 and exteroceptive-proprio-
ceptive sensor  fusion20–22. Milella et al.18 presented a self-learning framework that employs a radar classifier to 
assign training labels for the visual-based classification module, but its performance may still be influenced by 
light levels. Typically, terrain classification by combining exteroceptive modalities (e.g. images, lidar, radar) and 
proprioceptive modalities (e.g. acceleration, audio) could have better environmental robustness and achieve 
better performance. For example, a self-supervised terrain classification framework by combining the visual 
and audio modalities was  proposed20, which used the audio feature to self-label the visual terrain images for 
semantic segmentation.

Another interesting branch of the proprioceptive sensor is to use artificial whiskers for mobile robot 
 navigation23, object  detection24, obstacle shape  recognition25, and terrain surface  information26 inspired by ani-
mals using their whiskers to sense environmental information and navigate in the dark  environments27. Zurek 
et al.28 showed that a mobile robot could utilize static antennae as a local detector to determine the orientation 
and location of sudden obstacles during quick motion, which could compensate for the limitation of visual meth-
ods. Moreover, Solomon et al.29 proposed an approach to perceive the object’s 3D shape information by using a 
tactile whisker to collect contact torque information for obstacle shape recognition. These results demonstrate 
the potential that a whisker sensor could be developed for terrain perception in an extreme environment.

However, most of the aforementioned state-of-the-art algorithms require a large number of training data, 
which is typically difficult to obtain. Moreover, it involves manual labelling to build a training dataset, which 
is not trivial in complex, unknown environments. Furthermore, these methods need a significant amount of 
computational resources for data processing e.g, Fourier transformation and online neural network training, 
and their classification performance tends to deteriorate when there is no sufficient variability in the training 
 dataset30. As a result, quickly and cost-effectively identifying and predicting the surface characteristics of an 
unknown terrain in complex extreme environments such as Mars is difficult for practical robotic applications, 
especially, with IMU and vision methods which require complicated processing of raw data.

Taking inspiration from nature another approach has recently emerged called physical reservoir computing 
 methods31,32. Physical reservoir computing exploits the nonlinear dynamics of a physical system to emulate a 
given nonlinear dynamic function. As depicted in Fig. 1A, at the centre of a physical reservoir computing sys-
tem is a high-dimensional complex physical system (aka the reservoir), which takes an input (e.g., time-varying 
forces) and maps it nonlinearly into its high-dimensional state  space33. In addition, by being a dynamic system, 
it integrates the information available in the input signal. The remarkable feature of this setup is, that it is suf-
ficient to add a simple linear static readout (weighted sum) from the high-dimensional state space in order to 
achieve a desired computation (e.g., desired dynamical mapping). This means the complex task of learning to 
emulate a desired nonlinear and dynamic input-output mapping can be, with the help of a reservoir, reduced 
to simple linear  regression34. Interestingly, a wide range of physical systems has been identified to be useful as 
reservoirs. This includes compliant body parts of  robots35, networks of  memristors36, and many  others37,38. This 
means, physical bodies can be exploited and in a physical reservoir computing setup, the learning only consists 
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Figure 1.  (A) Schematic diagram of the traditional (physical)reservoir computing system (B) Our proposed 
tapered whisker-based reservoir computing system. The mechanical spring is exploited as a reservoir. The input 
is coming from the interaction of the robot with different terrains. The readouts are implemented as three Hall 
sensors located at different locations. The learning consists of finding three corresponding linear output weights 
Wout , which significantly reduces the required computation. (C) The diagram for the axial vibration of a tapered 
beam under base harmonic excitation when the mobile robots move on different surfaces. ν denotes the spring 
local axial displacement.
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of finding a set of linear output weights. This reduces significantly the required computational and can therefore 
be very useful for autonomous robots. In this paper, therefore, we use a nonlinear tapered spring as a physical 
reservoir. In our case the input is the force introduced by moving the robot over different terrains and therefore 
exciting the spring which is attached to it. For the readout we use three Hall sensors at different locations of the 
spring, see Fig. 1B, using the eigen feature matrix of the Hall sensors’ readout working as the input of the logistic 
regression training. By exploiting the nonlinear dynamics of the tapered whisker, we are able to learn to classify 
different terrain relying solely on simple, linear regression.

To our knowledge, this is the first time that a reservoir computing-based navigation system employing a 
tapered whisker as the reservoir computer is deployed in a mobile robot for fast real-time terrain identification 
and practical texture-guided navigation tasks relying solely on an onboard Raspberry Pi 4B single board computer 
rather than an external computer (Fig. 2), which is the main contribution and significant advancement compared 
with our previous  work39,40. Another important improvement is that we quantitatively and qualitatively evaluate 
the physical reservoir computing capabilities of the proposed system, especially the frequency separation analysis 
in various analytical models and Finite Element Analysis (FEA) frameworks (Figs. 3, 4). We quantitatively dem-
onstrate the accuracy of our proposed model analysis through experiments, while experimentally exploring the 
effect of dynamic response outputs for different whisker axis locations and their different output combinations 
on the classification results in Figs. 4C and 5. We demonstrate that our proposed algorithm could cost-efficiently 
achieve highly accurate real-time terrain classification results in Fig. 5B compared with state-of-art methods, 
and analyzed and demonstrated experimentally how the mobile robot can be controlled by speed to elicit unique 
frequency domain responses in a whisker sensor to help surface identification in Fig. 5C. Finally, as illustrated 
in Fig. 7, we demonstrate that the reservoir computing system could provide morphological computation power 
for real-time surface texture-guided mobile robot navigation solely relying on onboard hardware rather than 
an external computer.

Figure 2.  (A) A differential-drive mobile robot with a bio-inspired tapered whisker sensor vertically installed 
on the front to achieve reservoir computing-based terrain classification and texture-guided navigation. (B) The 
tapered whisker sensor and model. (C) Workflow of the proposed tapered whisker-based reservoir computing 
systems for the whiskered robot real-time terrain classification, and the terrain identification-based navigation.
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Results
System modal response and parametric study. The external excitation of a nonlinear spring reser-
voir should replicate a reservoir computer composed of a large number of random and fixed internal nonlinear 
nodes. As a result, the computing system only needs to be trained to estimate the output signal weight matrix 
Wout to relate the reservoir states x(t) and the output signal y(t). In this section, the dynamic response of the 
proposed tapered whisker is investigated in various theoretical and Finite Element Analysis (FEA) frameworks 
to comment on the physical reservoir computing capabilities of the proposed system. The results are compared 
with those of a simple spring-based whisker used in our previous  study17.

Steady state modal response and sensor placement. The system modal response for the first six natural frequen-
cies is plotted in Fig. 3. These values and plots are compared against the results from a modal FEA of the 3D 
system using the SolidWorks static simulation plugin. Here, only the modes with dominant axial deflection are 
plotted. The values for ω∗ and the overall mode shapes are comparably close between the theoretical and the FEA 
results with 7.5 Hz mean absolute (2.5% w.r.t the FEA results) error. This suggests that the provided theoretical 
framework is adequate for further structural dynamic analysis of the actual system.

A Fast Fourier Transform (FFT) analysis of the experimental results showed that the dominant vibration 
modes from various types of ground surfaces have a frequency of ωb < 20 Hz. Higher modes are associated with 
disturbances and sensor noises with negligible amplitude. This suggests that the first two mode shapes contribute 
the most to the response of the system. Hence, three sensors along the spring are adequate to gather enough 
information for decoding the system excitation source. Next, the theoretical framework presented is utilized to 
highlight the reservoir computing capabilities of the system in parametric studies which are very time-consuming 
to perform otherwise due to the high computational cost of FEA.

Excitation parametric study on sensor signal. The sensors’ signals are proportional to the maximum beam dis-
placement at the axial location of the sensors. To investigate the relationship between the Hall sensors’ response 
to different beam base excitation, the maximum displacement of the beam at the sensor locations lH (6.5 mm, 
55 mm and 103 mm from the base) are plotted against different values for the base excitation amplitude νb and 
frequency ω in Fig. 4A. The beam steady-state response based on the presented theoretical framework is used in 
this parametric study.

The low-frequency range plots ( ω < 200 Hz, Fig. 4A-top) show that the base sensor signal follows the exci-
tation signal, as expected due to the location of the sensor. The middle sensor is located close to a node of the 
second mode shape while the tip sensor is never on a mode shape node. This results in a significant difference in 
the signal amplitudes (and hence the information richness) of the set of sensors. We suspect that these differences 
in the sensor signals provide enough nonlinearity required for a reservoir computer and enough information 
for the train identification task.

The high-frequency range plots (Fig. 4A-bottom) show a small amplification factor for the middle and tip 
sensor locations (hence, signals) compared to the low-frequency range plots and the base sensor readings. This 
highlights the desirable low-pass filter, i.e. amplification for train texture relevant excitation and filtering for 
higher frequency noises, properties of a vertical tapered helical spring structure compared to a vibration sensor 
attached close to or directly on the excitation base, e.g. the mobile robot chassis in this case. This suggests that 
the sensors should be robust enough against (by not amplifying) low amplitude but high-frequency excitation 
signals with ωb < 2000 Hz, that may occur due to the train imperfections and mobile robot structure vibrations.

The analysis results of the actual terrains experimental tests in Fig. 4C demonstrate the accuracy of our pre-
vious analysis of the dynamic response of the tapered whisker sensor. An FEA study for the dynamic response 
of the system is conducted in the next subsection to investigate the transient dynamics of the system. This is 
important to evaluate the robustness of the system’s response to sudden disturbances.
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Figure 3.  System modal response for the first six axial modes of vibration, with ν is the spring axial 
displacement and natural frequency ω∗ , along the major axis based on the solutions from top) the theoretical 
framework, and bottom) FEA using the SolidWorks Static Analysis plugin. Please note that the top plots do not 
represent the spring’s deformed shape but the local axial displacement along the spring’s major axis.
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Transient dynamics finite element analysis. A vibration analysis of the whisker was performed using Solid-
Works software. Initially, the whisker was modelled using SolidWorks and imported into SolidWorks Simulation. 
Thereafter, the model was discretized and a mesh was generated. A base exciting acceleration a(t) was applied 
to the base of the conical spring. The acceleration a(t) is given by a(t) = sin(2π ft) , where f is the frequency of 
vibration and t is time. Then, a non-linear transient simulation with a varying time step was undertaken. The 
frequency of vibration varied from 2 Hz to 64 Hz. To comply with the actual whisker properties, spring stainless 
steel (AISI 304) was used as the material for the vibration analysis.

Figure 4B shows the displacement waveform and power spectral density plots of the topmost whisker posi-
tion for frequencies of 2 Hz, 8 Hz, and 32 Hz. As the forcing frequency increases from 2 Hz to 32 Hz, the motion 
transforms from periodic oscillations to quasiperiodic oscillations as shown in waveform plots. This arises due 
to the natural frequency of oscillations becoming dominant as shown in power spectral density plots. When the 
base exciting frequency increases, the amplitude of the second-dominant frequency increases. This results in a 
quasiperiodic oscillation of two dominant frequencies which could be observed in Fig. 4B,C. Figure 4D shows 
the return maps (Poincaré map) for frequencies of 2 Hz, 8 Hz and 32 Hz which map the first local maxima of 
displacement waveform to the next local maxima. This gives insight into the displacement properties of the 
whisker by lowering its phase space dimension. The first two return maps show sets of dense localized points 

Figure 4.  Theoretical study and quantitative experiments simultaneously verified the effect of dynamic 
response at different whisker axis locations on signal separation. (A) Parametric study of the maximum beam 
lateral displacement νmax at the location of the three hall sensors (at the spring base, middle, and tip) for various 
base sinusoidal excitation signal amplitude νb and frequency ωb . Top) low-frequency range ( ωb < 200 Hz) 
plots to highlight the excitation due to the train texture. Bottom) higher frequency range plots associated with 
texture/sensor noise and mobile robot structure vibrations. (B) Displacement waveform (i) and power spectral 
density (ii) plots; (A) f = 2Hz , (B) f = 8Hz , (C) f = 32Hz . (C) The top two sub-figures are the continuous 
wavelet transform (CWT) analysis of the top Hall sensor’s outputs of the whisker sensor as a result of the motion 
of the mobile robot on flat and carpet terrains respectively. The bottom figure is the FFT analysis results of the 
vibration signals over these two terrains. The dominant vibration modes have a frequency of ωb < 20 Hz. (D) 
The return maps of the system dynamics corresponding to base excitations; (i) f = 2Hz , (ii) f = 8Hz , (iii) 
f = 32Hz . The return maps show a plot between the first local maxima ( Xn ) of the displacement waveform to 
the next local maxima ( Xn+1 ) of the displacement.
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which correspond to periodic oscillations. The third return map shows a closed loop structure which corresponds 
to a quasiperiodic oscillation. This suggests that the underlying dynamics of the whisker under base excitations 
are not chaotic.

Experiments analysis of tapered whisker dynamic response. In order to verify the aforementioned 
theoretical and FEA analyses on the physical reservoir computing capabilities of the proposed system, we con-
ducted a variety of terrain classification experiments to explore the effect of dynamic response outputs for dif-
ferent whisker axis locations and their different output combinations on the classification results. In addition, 
we also explored the depth of the effect of movement velocity on frequency separation of the whisker reservoir 
computing system and its impact on terrain classification accuracy.

Dynamical response of different whisker axis location. By comparing the maximum, medium and minimum 
eigenvector direction of the whisker reservoir outputs shown in Fig. 5A,B,C respectively, we can find that the 
maximum eigenvector direction can distinguish eight different terrains significantly, while the minimum eigen-
vector would have a lot of chaos and signal overlap, which will cause misunderstandings for classification. This 
result shows that the direction of the sensor output eigenvectors can provide different surface texture informa-
tion, and different surface information can produce completely different eigenvector directions. Fig. 5D gives 
the eigenvalue of our proposed TWRC system when it traversed eight different terrains. This indicated that 
varying external surface stimuli from different roughness and hardness terrains induce distinct eigenvalues for 
our proposed tapered whisker TWRC system. All these results also mean the whiskered mobile robots could 
autonomously identify and vaguely predict the roughness and softness of the terrain it traversing, only based on 
the prior calibrated tapered spring whisker RC system.

These results reinforce our previous theoretical analysis that the tapered whisker could provide enough 
nonlinearity required for a reservoir computer and enough information for the train identification task. This 
might also indicate that the nonlinear stiffness of the tapered whisker can be controlled to rotate the covari-
ance direction between different pair Hall sensors for a certain external vibration to improve the classification 
accuracy. To demonstrate this, we employed different paired Hall sensor outputs to train the logistic regression 
network and compare the classification results. The results in Fig. 5E show the average TWRC system prediction 
success rate of the different paired Hall sensor reservoirs of different time windows T based on its eigenvector, 
and the results based on the maximum-eigenvector of three Hall sensors. Terrain classification results will vary 
for different paired Hall sensor reservoirs for the same time window length, which implies that the non-linear 
stiffness of the tapered whisker sensor is an important internal natural parameter and that combinations of the 
outputs of different stiffness positions can elicit information perception in our mobile robot. Fusing different 
paired stiffness reservoirs- outputs would help the robot to capture different frequency information in the time 
domain directly to better perform surface classification tasks.

Figure 5.  (A) The maximum-eigenvector direction of the whisker reservoir outputs. (B) The medium-
eigenvector direction of the whisker reservoir outputs. (C) The minimum-eigenvector direction of the whisker 
reservoir outputs. (D) Eigenvalue of the TWRC system of eight different terrain surfaces in Eigenspace. (E) 
The average RC system prediction success rate of the different paired Hall sensor reservoirs of different time 
windows T based on its Eigenvector, and the results based on the maximum-eigenvector of three Hall sensors.
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Effect of robot speed on signal separation. As shown in Fig. 6A, we conducted experiments over eight different 
terrains with several stable speeds of 0.1 m/s, 0.2 m/s, 0.3 m/s, 0.4 m/s and 0.5 m/s respectively to explore the 
effect of speed on the classification accuracy. If the speed is too large (i.e. more than 0.4 m/s) or too small (i.e. 
less than 0.2 m/s) the classification accuracy drops. This shows that speed of movement is a control variable to 
optimally apportion vibration frequency components across the 3 sensors placed along the tapered spring.

Figure 6B gave the classification confusion matrix of our TWRC system for 25 random experiments, with the 
average classification rate of 87.2% for the time window 1.5 seconds. These results demonstrate that the TWRC 
system has effective identification and classification capabilities even for very similar terrain surfaces, which 
means that it can be applied to a wider range of scenarios to execute robot deployment tasks, such as object 
classification and texture information capture. Compared with the results in Fig. 5E, this reports a significant 
improvement in classifications of these eight terrain surfaces, which reflects the fact that both the eigenvalues 
and the eigenvectors contain texture information that can reflect external stimuli.

As shown in Fig. 6C marked by a yellow circle, when the speed is relatively low, the different external ter-
rain profiles result in relatively small and overlapping tapered whisker reservoir features, making it difficult to 
distinguish accurately, and the vibration generated by the robot itself will have a relatively large disturbing effect 
on it at this time. This is because when the whisker sensor is in this stiffness state and the operating speed is too 
low, the whisker vibration caused by the change of the terrain surface profile will be relatively weak and smooth. 
Moreover, in our experiments, when the speed reaches 0.5 m/s, its classification accuracy is significantly lower 
relative to that at 0.4 m/s. This may be due to the fact that when the whiskered robot speed is too fast, the vibra-
tions generated in the whisker sensor due to different terrain surfaces may result in a chaos of reservoir features 
as marked by a red circle in Fig. 6C, which is essentially chaos in the frequency domain, leading to difficulties in 
accurate differentiation. Combining the results shown in Fig. 6A,C indicates that a mobile robot could use speed 
control to elicit unique frequency domain responses in a tapered whisker sensor to help surface identification.

Computational superiority of the proposed reservoir system. To demonstrate the computational efficiency of 
our reservoir computing (RC) approach with the state-of-art feature extraction methods IMU  accelerometer12, 

Figure 6.  (A) Reservoir computing average prediction accuracy of eight terrains at varying robot speeds: 
0.1 m/s, 0.2 m/s, 0.3 m/s, 0.4 m/s, and 0.5 m/s. (B) Average classification results of the TWRC system over 
25 random trials when the robot moving at 0.2 m/s and the time window is 1.5 s. (C) The effect of speed on 
the separation of Eigenvalue vectors for soft sand and flat floor with gaps. (D) Experimental process time 
comparison of different feature extraction methods for processing 1000 sampled raw data vectors with different 
time window lengths T. PSD means power spectrum periodogram, TDF means time domain features, and RCF 
represents the reservoir features.
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microphone  audio14, or tactile probe-vibration  data15, we compared the time required by these above algorithms 
to process the same amount of raw data in Fig. 6D. The computation results in Fig. 6D show that to extract the 
same number of feature matrices, using the RC method is much faster and more computationally efficient, com-
pared to the aforementioned traditional methods CWT, FFT, PSD, and TDF (we extract four time features of raw 
data in this experiment: mean, variance, root mean square, integral of absolute value). Even if the TDF extracting 
features in the time domain is the fastest compared with the aforementioned traditional methods CWT, FFT, 
and PSD, our RC feature extraction method is at least 60% faster in actual computation compared with the TDF. 
Moreover, these methods not only require computation resources to process the sampled data and extract sur-
face features, but a complex deep learning network is also still needed for model training for most state-of-art 
methods to perform surface identification and classification. In contrast, the output of RC can be directly used 
for simple linear regression to obtain fast classification and recognition results with cost-efficient computation 
sources, as illustrated in Fig. 2, which is a computational economy approach based on theoretical computational 
complexity compared with other neural networks like convolutional neural Networks, deep neural network. 
These experiments are finished by using Matlab 2020a on a computer (Intel(R) i5-10210U CPU@1.60 GHz, 8 GB 
RAM), and 10 trials have been performed for each extraction method to ignore the influence of the operating 
compute system load.

Whisker reservoir computing based navigation experiments. To validate that the tapered whisker-
based reservoir computing system can be employed for fast real-time terrain identification and practical tex-
ture-guided navigation tasks relying solely on the onboard Raspberry Pi rather than an external computer, we 
proposed a whisker reservoir computing based navigation strategy shown in Fig. 7A and conducted a surface 
texture-guided navigation experiments in Fig. 7B. In this experiment, a red carpet 1 m wide and 3 mm thick was 
laid in an S-shape on top of the brick terrain to serve as a following terrain Tfollowing , as shown in Fig. 7B. We used 
the same configuration differentially driven mobile robot equipped with the TWRC system as in the previous 
experiments to perform this surface texture-guided navigation experiment by using the Navigation algorithms. 
Figure 7A gives the detailed navigation strategy. A new reservoir computing weight matrix was retrained by add-
ing the new red carpet class for fast terrain recognition to avoid driving off the terrain Tfollowing , and the control 
commands for the mobile robot will be sent directly to the wheel servos via the Raspberry Pi. In order to avoid 
the impact on terrain recognition caused by the robot’s vibration during stopping and steering, the whiskered 
robot is stopped for a period of time after each manoeuvre to allow the tapered whisker sensor to regain stability.

As can be seen in Fig. 7B, the whiskered robot can successfully reach the target point by following the speci-
fied complex-shaped terrain with high quality. By performing multiple Goal_oriented_Turning turns, the mobile 
robot can avoid traversing the surface of the brick based on the rapid recognition of the anomalous terrain by 
the TWRC algorithm. The success of this experiment relies on our reservoir computing algorithm based on the 
tapered whisker sensor to identify the terrain with high accuracy and rapidity, and our Navigation algorithm to 
precisely control the robot’s movements. In order to test the reliability of our algorithm, we conducted repeated 
experiments in the scenario shown in Fig. 7B. Although the robot path of each experiment robot will be different 
due to the influence of the starting point location and the drift error due to accumulation over time, the mobile 

Figure 7.  (A) Surface texture-guided navigation algorithm to follow a terrain surface Tfollowing (light grey) 
based on the real-time TWRC system. (B) Time series video images taken during terrain texture identification-
guided mobile robot navigation experiment, following the red carpet surface. These images, from (1) to (8), 
demonstrate one of the successful texture-guided navigation manoeuvres. In (3), the whiskered robot detected 
the surrounding terrain Tout and executed the Goal_oriented_Turning operation in the image (5). In (7), the 
robot performed a final steering manoeuvre to reach its final destination in (8).
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robot can quickly recognize unknown terrain and keep moving on special terrain Tfollowing . These experiments’ 
results indicate that robots can achieve independent and autonomous motion planning and obstacle avoidance 
without relying on any external high-performance computing devices by using only a simple reservoir comput-
ing system on a Raspberry Pi 4B single-board computer, which is of great importance for robots performing 
tasks in extreme environments with limited computing resources, such as, for example, Mars exploration. More 
sophisticated and accurate navigation algorithms can be developed in our future research, thus allowing our 
TWRC algorithm to be applied to more scenarios.

Conclusion
In this paper, we presented a real-time terrain identification-based navigation method for mobile robots using an 
onboard tapered whisker-based reservoir computing system as the core, relying solely on an onboard Raspberry 
Pi 4B single-board computer rather than an external computer. Terrain surface following experiments demon-
strated that our method is fast and accurate enough to identify changes in terrain and adjust their trajectory 
in time to follow specific shapes of the terrain. This is a new terrain recognition-based navigation technology 
compared to alternative terrain recognition-based navigation technologies (e.g. vision).

Through theoretical analysis, based on the Euler-Bernoulli beam theory, and Finite Element simulations, 
we have demonstrated that a nonlinear conical whisker sensor can directly implement a reservoir computer for 
frequency separation from time domain vibrations in the mobile robot. Through experiments, we explored the 
dynamic output of different whisker axis locations and their different combinations, as well as the effect of differ-
ent motion speeds on the separation of external signals, especially for terrain classification accuracy. Experiments 
also proved the effectiveness and the computational superiority of the method, and the robot could adapt to the 
optimal movement speed depending on the scenario.

Future work involves improving the design of the whisker sensors to improve the classification accuracy of 
the terrain. One interesting direction is to design high-performance whisker sensors by optimizing the locations 
of tapping the whisker sensor signal outputs. Another approach is to investigate the use of real-time stiffness 
control of the whiskers as a control parameter to excite the steady-state vibration frequency components specific 
to a given terrain. In addition, we can improve the robot’s ability to perform tasks in different scenarios by fusing 
signals with other sensors, such as vision and audio.

Methods
Tapered spring‑based whisker design. The proposed nonlinear tapered spring-based whiskered sensor 
for reservoir computing in this paper is illustrated in Fig. 2B. The whisker sensor was constructed by a high-car-
bon (S. Steel AISI 304) tapered nonlinear spring with the wire diameter d is 1 mm, which also has the free length 
is l 100 mm and the spring number of coils n is 18, and the coil base mean radius Rb and tip mean diameter Rt 
are 20 mm and 10 mm respectively. The beam bending modulus EI is equal to the spring wire torsional modulus 
GJ, in which G = E/3 = 70 [GPa] is the wire material (stainless steel) shear modulus, and the J = πd4/4 is the 
wire cross-section 2nd moment of area. The wiring density ρ is 8050 kg/m3 and the moment of area correction 
factor cJ is 0.08. To accurately capture the external oscillation information, three linear Hall sensors (SS49E) are 
orthogonally installed under the three permanent neodymium magnets at the locations lH (6.5 mm, 55 mm and 
103 mm from the base), which were embedded in the top, middle, and bottom of the tapered whisker to capture 
continuous magnetic field changes nearby when there is external excitation, as shown in Fig. 2A,B. The tapered 
whisker sensor is orthogonally mounted in the left front of the mobile robot, as shown in Fig. 2A. The external 
vibration caused by robots steadily traversing different terrains will work perpendicularly on the tapered whisker 
shaft, which will lead to nonlinear vertical displacement of the magnets along the spring beam, as shown in 
Fig. 1C. Figure 1B demonstrates the computation framework of the physical tapered whisker reservoir computer 
system, in which the Hall sensor will capture the magnetic flux change induced by the nonlinear vibration to 
provide morphological computation power.

Experiment platform and procedure. The overall system diagram of the tapered whisker reservoir com-
puting for real-time terrain identification-based navigation is shown in Fig. 2C. The tapered whisker-based reser-
voir computing, terrain identification and robot navigation and control are synchronized and conducted online 
by the Raspberry Pi 4B, because the reservoir computing system only requires modest computing resources for 
linear readout weight training, the mobile robot could synchronously adjust its trajectory based on the real-time 
terrain identification result to avoid falling into dangerous terrains. The detailed navigation algorithm will be 
presented in Fig. 7A, and the details of the data collection, processing, and weight metrics training could be 
found in the subsection of data collection and RC training. In this paper we use the same robot configuration for 
all experiments. For all the experiments, the whiskered robot moved over the eight different terrains at a steady 
speed with the sampling frequency is 100 Hz to collect training datasets for terrain surface classification and 
navigation, as illustrated in Fig. 2.

Theoretical analysis of whisker dynamic response. Parametric studies for the problem of the dynamic 
response of a tapered whisker sensor to a harmonic base excitation cannot be performed in a reasonable time 
based on high-fidelity FEA. In this section, a simple analytical framework is presented to investigate the steady-
state solution to this problem (see Fig. 1C).

Axial base excitation of a tapered cantilever beam. In this section, an analytical model is presented for the 
axial vibration of a tapered spring following the derivations  in41. The equation of force equilibrium, between the 
inertial and spring tension forces, for an element of this system not subject to external force, takes on the form
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where ν is the axial displacement of the element, Z = 2(Rb − α)x , α = (Rb − Rt)/l is the tapered slope, Rb and 
Rt are the spring base and tip mean radius, l is the spring length, m = ρa is the wire mass per length, ρ is the wire 
density, a = πd2/4 is the wire cross section area, d is the wire diameter, and G is the wire material shear modulus.

Following the separation of the variable method, a general solution based on the first-order cylindrical (Bes-
sel) functions J of orders 2/3 and −2/3 are derived  in41 as

 where ζ = Z/(2Rb) , � = �/(3
√
c) , � = 2πω , ω is the harmonic response frequency in Hz, c = α

2Gd4/(128πmR6
b) 

is a bulk constant, δ is the harmonic response phase difference, and Ci is a constant.
This solution can be extended to the case of the steady-state response of the base axial excitation of a tapered 

spring, which is the target of this analysis, as long as the base excitation and the beam harmonic response have the 
same frequency � . Then the base excitation of the form νb cos(�t + δ) can be enforced as a boundary condition 
for the axial motion of the spring base. Then, the boundary conditions at the spring base and tip are

where νb is the amplitude for the base axial vibration and the second boundary condition stands for the load-free 
condition at the spring tip.

Substituting Eqs. (3) in (2) results in a system of equations as follows

 where A is

 ζb = ζ(0) ,  ζt = ζ(l) ,  a n d  f r o m  t h e  r e c u r s i v e  p r o p e r t y  o f  B e s s e l  f u n c t i o n s 
J ′v(x) = ∂Jv(x)/∂x = (Jv−1(x)− Jv+1(x))/2.

Axial displacement and natural frequencies. In the case of base axial excitation, we may solve the inverse prob-
lem form Eq. 4 for the values for Ci given the known base axial excitation frequency ω (hence �b ) and amplitude 
νb . The system natural frequencies ω∗ can be found by solving for the frequencies that satisfy the following rela-
tion det(A ) = 0 , where det is the matrix determinant operator.

Equivalent parameters for a compression spring. The above derivations assume each full coil as a finite element 
along the spring axis. To accommodate the effect of the spring number of coils nc and pitch p = l/nc , we may 
substitute the spring length l with nc in the above relations. Hence, we have α = (R0 − R1)/nc and x = xcp , 
where xc is the unit length based on the coil number. Table 1 presents the tapered spring whisker parameters 
used in our theoretical and FEM studies, which are based on the average reported values for Stainless Steel mate-
rial in the literature.

Data collection and logistic regression retraining. To verify that our robot relying on the TWRC 
system can follow a specific terrain surface and quickly recognize new terrain, we collected training data on the 
red carpet shown in Fig. 7B in order to train a new reservoir-computing- weight-matrix. The whiskered robot 
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Table 1.  Tapered spring whisker parameters.

Info Symbol [unit] Value

Wire radius r [m] 5e–4

Spring length l [m] 103e–3

Hall sensor locations lH [m] [6.5, 55, 103]e–3

Spring coils n 18

Coil base mean radius Rh [m] 20e–3

Coil tip mean radius Rg [m] 10e–3

Wire shear modulus G [Pa] 70e9

Density ρ [Kg/m3] 8050

Moment of area correction factor cJ 0.08

Wire material – S. Steel AISI 304
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moved over the red soft carpet at a steady speed of 0.2m/s with the tapered whiskered tactile sensor mounted 
on the same place during experiments, the mobile robot configuration is the same as our previous experiments. 
We use the same ADS1115 A/D converter to connect the vibration data with the sampling frequency is 100 Hz. 
After that, the covariance matrix CD of collected sampling vector Dm×3

k  was then decomposed into their Eigen 
representation for logistic regression weights training.

where the eigenvalue Rval representing the scaling factor in each dimension of Dm×3
k  , and the eigenvector Rvec of 

the CD reflecting the dispersion direction of the distribution of the Dm×3
k  . The reservoir feature matrix Rf  work-

ing as the input of the logistic regression is given as follows:

Only the simple logistic regression network was employed to train the readout weights Wout for the different 
terrain recognition, as shown in Fig. 1. A, and the highest probability of the expected possible terrain surfaces 
would be cost-efficient determined both by the input reservoir vector Rf  and the weight vector W∗

out . To avoid 
inaccurate recognition due to data imbalance, we used the same amount of data as the other terrain categories 
to train the weight matrix for logistic regression, the time windows of each sampled terrain vector are 1.5 s with 
150 vectors in total for each class. More details about the data processing and logistic regression training can be 
found in our previous  paper42.

Real‑time terrain identification‑based navigation strategy. We proposed a surface texture-guided 
navigation algorithm based on the TWRC system to follow a specific terrain surface. Fig. 7A gives the detailed 
navigation strategy, when the whiskered robot is on the specified terrain surface Tfollowing , it will move towards 
the target point at a specific speed vrobot . Our on-board TWRC system can immediately identify the terrain cur-
rently being passed due to its not requiring complex data pre-processing prior to being used for classification. 
Moreover, the mobile robots could also accurately estimate the property of the unknown terrain surface and 
achieve auto-labelling of new terrain accurately estimate the property of the unknown terrain surface based on 
our previous  work40. When the robot realizes that it is driving away from surface Tfollowing , it will immediately 
stop and move back a distance l1 in a straight line to return to the Tfollowing.

When the whiskered robots move back to Tfollowing , the Goal_oriented_Turning module will control the 
whiskered robot to rotate in place towards the target based on the rotation angle ϕ relative to the target Pgoal . 
The scalar and direction of the rotation angle ϕ will be calculated based on the relative position of the current 
position Pcurrent to the target position Pgoal . For example in Fig. 7A, at point B the ’whisker’ robot will do a clock-
wise rotation of angle ϕ2 , while at point C for point D it will do a counterclockwise rotation of angle ϕ3 and ϕ4 
respectively. In order to avoid the impact on terrain recognition caused by robots vibration during stopping and 
steering, the whiskered robot is stopped for a period of time after each manoeuvre to allow the tapered whisker 
sensor to regain stability. The location of the whiskered robot Pcurrent will be incorporating calculated speed, 
heading direction, and course over elapsed time using the dead reckoning method. Considering the small size 
of our test site, the effect of drift error due to accumulation over time can be ignored. Based on this navigation 
algorithm, our whiskered robot can successfully reach the target point by cruising the specified terrain surface 
through several Goal_oriented_Turning attempts.

Data availibility
The raw data and material used and analyzed in this study are available from the corresponding author upon 
reasonable request.

Received: 30 November 2022; Accepted: 21 March 2023

References
 1. Otsu, K., Ono, M., Fuchs, T. J., Baldwin, I. & Kubota, T. Autonomous terrain classification with co-and self-training approach. 

IEEE Robot. Autom. Lett. 1, 814–819 (2016).
 2. Hadsell, R. et al. Deep belief net learning in a long-range vision system for autonomous off-road driving. In 2008 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, 628–633 (IEEE, 2008).
 3. Nava, M., Guzzi, J., Chavez-Garcia, R. O., Gambardella, L. M. & Giusti, A. Learning long-range perception using self-supervision 

from short-range sensors and odometry. IEEE Robot. Autom. Lett. 4, 1279–1286 (2019).
 4. Suger, B., Steder, B. & Burgard, W. Traversability analysis for mobile robots in outdoor environments: A semi-supervised learning 

approach based on 3d-lidar data. In 2015 IEEE International Conference on Robotics and Automation (ICRA), 3941–3946 (IEEE, 
2015).

 5. Christie, J. & Kottege, N. Acoustics based terrain classification for legged robots. In 2016 IEEE International Conference on Robot-
ics and Automation (ICRA), 3596–3603 (IEEE, 2016).

 6. Tick, D., Rahman, T., Busso, C. & Gans, N. Indoor robotic terrain classification via angular velocity based hierarchical classifier 
selection. In 2012 IEEE International Conference on Robotics and Automation, 3594–3600 (IEEE, 2012).

 7. Furgale, P. & Barfoot, T. D. Visual teach and repeat for long-range rover autonomy. J. Field Robot. 27, 534–560 (2010).
 8. Santana, P., Guedes, M., Correia, L. & Barata, J. Stereo-based all-terrain obstacle detection using visual saliency. J. Field Robot. 28, 

241–263 (2011).
 9. Konolige, K. et al. Mapping, navigation, and learning for off-road traversal. J. Field Robot. 26, 88–113 (2009).
 10. McDaniel, M. W., Nishihata, T., Brooks, C. A. & Iagnemma, K. Ground plane identification using lidar in forested environments. 

In 2010 IEEE International Conference on Robotics and Automation, 3831–3836 (IEEE, 2010).

(6)CD = covp,q = RvecRvalR
T
vec p, q = T , B, M,

(7)Rf = [Rvec Rval]
T



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5213  | https://doi.org/10.1038/s41598-023-31994-x

www.nature.com/scientificreports/

 11. Zhou, S. et al. Self-supervised learning to visually detect terrain surfaces for autonomous robots operating in forested terrain. J. 
Field Robot. 29, 277–297 (2012).

 12. Brooks, C. A. & Iagnemma, K. Vibration-based terrain classification for planetary exploration rovers. IEEE Trans. Rob. 21, 1185–
1191 (2005).

 13. Trautmann, E. & Ray, L. Mobility characterization for autonomous mobile robots using machine learning. Auton. Robot. 30, 
369–383 (2011).

 14. Valada, A. & Burgard, W. Deep spatiotemporal models for robust proprioceptive terrain classification. Int. J. Robot. Res. 36, 
1521–1539 (2017).

 15. Giguere, P. & Dudek, G. A simple tactile probe for surface identification by mobile robots. IEEE Trans. Robot. 27, 534–544 (2011).
 16. Baishya, S. S. & Bäuml, B. Robust material classification with a tactile skin using deep learning. In 2016 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS), 8–15 (IEEE, 2016).
 17. Yu, Z., Sadati, S. H., Wegiriya, H., Childs, P. & Nanayakkara, T. A method to use nonlinear dynamics in a whisker sensor for terrain 

identification by mobile robots. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 8437–8443 
(IEEE, 2021).

 18. Milella, A., Reina, G. & Underwood, J. A self-learning framework for statistical ground classification using radar and monocular 
vision. J. Field Robot. 32, 20–41 (2015).

 19. Reina, G., Milella, A. & Worst, R. Lidar and stereo combination for traversability assessment of off-road robotic vehicles. Robotica 
34, 2823–2841 (2016).

 20. Zürn, J., Burgard, W. & Valada, A. Self-supervised visual terrain classification from unsupervised acoustic feature learning. IEEE 
Trans. Robot. 37, 466–481 (2020).

 21. Brooks, C. A. & Iagnemma, K. Self-supervised terrain classification for planetary surface exploration rovers. J. Field Robot. 29, 
445–468 (2012).

 22. Chen, Y., Rastogi, C. & Norris, W. R. A cnn based vision-proprioception fusion method for robust ugv terrain classification. IEEE 
Robot. Autom. Lett. 6, 7965–7972 (2021).

 23. Prescott, T. J., Pearson, M. J., Mitchinson, B., Sullivan, J. C. W. & Pipe, A. G. Whisking with robots. IEEE Robot. Autom. Mag. 16, 
42–50 (2009).

 24. Salman, M. & Pearson, M. J. Whisker-ratslam applied to 6d object identification and spatial localisation. In Conference on Bio-
mimetic and Biohybrid Systems, 403–414 (Springer, 2018).

 25. Pearson, M. J. & Salman, M. Active whisker placement and exploration for rapid object recognition. In 2019 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), 672–677 (IEEE, 2019).

 26. Kaneko, M., Kanayama, N. & Tsuji, T. Active antenna for contact sensing. IEEE Trans. Robot. Autom. 14, 278–291 (1998).
 27. Salman, M. & Pearson, M. J. Advancing whisker based navigation through the implementation of bio-inspired whisking strategies. 

In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), 767–773 (IEEE, 2016).
 28. Zurek, D. B. & Gilbert, C. Static antennae act as locomotory guides that compensate for visual motion blur in a diurnal, keen-eyed 

predator. Proc. R. Soc. B: Biol. Sci. 281, 20133072 (2014).
 29. Solomon, J. H. & Hartmann, M. J. Extracting object contours with the sweep of a robotic whisker using torque information. Int. 

J. Robot. Res. 29, 1233–1245 (2010).
 30. Wellhausen, L. et al. Where should i walk? predicting terrain properties from images via self-supervised learning. IEEE Robot. 

Autom. Lett. 4, 1509–1516 (2019).
 31. Hauser, H. Physical reservoir computing in robotics. Natural Comput. Ser. 1, 169–190. https:// doi. org/ 10. 1007/ 978- 981- 13- 1687-

6_8 (2021).
 32. Lukoševičius, M., Jaeger, H. & Schrauwen, B. Reservoir computing trends. KI-Künstliche Intelligenz 26, 365–371 (2012).
 33. Komatsu, M., Yaguchi, T. & Nakajima, K. Algebraic approach towards the exploitation of “softness’’: the input-output equation for 

morphological computation. Int. J. Robot. Res. 40, 99–118 (2021).
 34. Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation 

with compliant bodies. Biol. Cybern. 105, 355–370 (2011).
 35. Picardi, G., Hauser, H., Laschi, C. & Calisti, M. Morphologically induced stability on an underwater legged robot with a deformable 

body. Int. J. Robot. Res. 40, 435–448 (2021).
 36. Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 1–10 (2017).
 37. Nakajima, K. Physical reservoir computing-an introductory perspective. Jpn. J. Appl. Phys. 59, 060501 (2020).
 38. Nakajima, K., Hauser, H., Li, T. & Pfeifer, R. Information processing via physical soft body. Sci. Rep. 5, 1–11 (2015).
 39. Yuan, W. et al. Energy-efficient semi-flocking control of mobile sensor networks on rough terrains. IEEE Trans. Circuits Syst. II 

Express Briefs 66, 622–626 (2018).
 40. Yu, Z., Sadati, S. H., Hauser, H., Childs, P. R. & Nanayakkara, T. A semi-supervised reservoir computing system based on tapered 

whisker for mobile robot terrain identification and roughness estimation. IEEE Robot. Autom. Lett. 7, 5655–5662 (2022).
 41. Epstein, I. The Motion of a Conical Coil Spring. J. Appl. Phys. 18, 368–374. https:// doi. org/ 10. 1063/1. 16976 60 (1947).
 42. Yu, Z., Perera, U. L. S., Hauser, H., Childs, P. R. & Nanayakkara, T. A tapered whisker-based physical reservoir computing system 

for mobile robot terrain identification in unstructured environments. IEEE Robotics and Automation Letters (2022).

Acknowledgements
This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) MOTION 
under Grant EP/N03211X/2, Grant EP/N029003/1, and Grant EP/N03208X/1 and also supported in part by 
China Scholarship Council, and by core funding from the Wellcome/EPSRC Centre for Medical Engineering, 
Wellcome Trust [WT203148/Z/16/Z].

Author contributions
All authors conceived the experiment. Z.Y., S.M.S., and S.P. conducted the experiment, and Z.Y., S.M.S., P.C., 
and T.N. analysed the results. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.Y.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1007/978-981-13-1687-6_8
https://doi.org/10.1007/978-981-13-1687-6_8
https://doi.org/10.1063/1.1697660
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5213  | https://doi.org/10.1038/s41598-023-31994-x

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	Tapered whisker reservoir computing for real-time terrain identification-based navigation
	Results
	System modal response and parametric study. 
	Steady state modal response and sensor placement. 
	Excitation parametric study on sensor signal. 
	Transient dynamics finite element analysis. 

	Experiments analysis of tapered whisker dynamic response. 
	Dynamical response of different whisker axis location. 
	Effect of robot speed on signal separation. 
	Computational superiority of the proposed reservoir system. 

	Whisker reservoir computing based navigation experiments. 

	Conclusion
	Methods
	Tapered spring-based whisker design. 
	Experiment platform and procedure. 
	Theoretical analysis of whisker dynamic response. 
	Axial base excitation of a tapered cantilever beam. 
	Axial displacement and natural frequencies. 
	Equivalent parameters for a compression spring. 

	Data collection and logistic regression retraining. 
	Real-time terrain identification-based navigation strategy. 

	References
	Acknowledgements


