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A study of land surface processes using land surface models

over the Little River Experimental Watershed, Georgia

Alok K. Sahoo,1,2 Paul A. Dirmeyer,3 Paul R. Houser,1,2 and Menas Kafatos1

Received 3 December 2007; revised 31 March 2008; accepted 7 August 2008; published 30 October 2008.

[1] Three different land surface models (Hydrological improvements to the Simplified
version of the Simple Biosphere model (HySSiB), Noah model, and Community Land
Model (CLM)) were simulated on the NASA Goddard Space Flight Center’s Land
Information System platform at 1-km resolution over the Little River Experimental
Watershed, Georgia, and the simulated results were analyzed to address the local-scale
land-atmosphere processes. All the three models simulated the soil moisture in space and
time realistically. The Noah model produced higher soil moisture whereas the CLM got
lower soil moisture with many dry down phases. CLM and HySSiB models were
oversensitive to the atmospheric events. Different vertical discretizations of the model
layers affected the soil moisture results in all the three models. The arithmetic model
ensemble mean soil moisture performed reasonably well even at individual in-situ
measurement sites. We found that different model schemes partitioned the incoming water
and energy differently and hence produced different results for the water and energy
budget parameters. In CLM, the energy and water budget parameters were very closely
connected to the soil moisture (e.g., evaporation, latent, and sensible heat) change.
HySSiB produced very high surface runoff and very low subsurface runoff. The Noah
model did not produce much surface and subsurface runoff resulting in high surface soil
moisture. We did not find much variability in Noah latent heat, sensible heat, and ground
heat fluxes. From soil moisture data assimilation point of view, the mean bias removed
Noah soil moisture was found to be better than other data sets.

Citation: Sahoo, A. K., P. A. Dirmeyer, P. R. Houser, and M. Kafatos (2008), A study of land surface processes using land surface

models over the Little River Experimental Watershed, Georgia, J. Geophys. Res., 113, D20121, doi:10.1029/2007JD009671.

1. Introduction

[2] Land surface processes play an integral and substan-
tial part in both global water and energy budgets. Soil
moisture is a critical element in all land surface processes.
It controls the surface and sub-surface runoff; it supplies
moisture to the atmosphere; and helps determine the Bowen
ratio [Dirmeyer, 1995]. It also acts as a water reservoir for
the land surface hydrologic cycle and controls the water
uptake by the vegetation above the ground [Vinnikov and
Yeserkepova, 1991]. Quantifying soil moisture is important
for atmospheric scientists, hydrologists, agriculture scien-
tists as well as the policy makers who try to mitigate natural
disasters such as floods and droughts.
[3] Yet quantifying soil moisture is very difficult. There is

no clear definition of soil moisture. Different researchers
and professions look at it from different prospective and
define it in many different ways [Dirmeyer, 2004]. Nor is

there a global data set of observed soil moisture available
because the field observations are very scanty, satellites can
not see below the soil surface or through vegetation to
measure it and the current state-of-the-art land surface
models are not capable of representing the complex land
surface physics to simulate it accurately [Reichle et al.,
2004]. Even if a land surface model (LSM) were sufficiently
accurate, it requires complete and accurate meteorological
data as input - this is also lacking over most of the globe.
[4] Model intercomparison studies are one of the ways to

overcome the problems associated with any single model,
since results from the model intercomparison studies are not
biased by any individual model. As a result, there have been
many model intercomparison studies conducted in the last
decade to simulate different land surface variables and
address specific science problems related to the land surface
hydrology. The Project for Intercomparison of Land Surface
Parameterization Schemes (PILPS) is one such model
intercomparison project which was established in 1992
and has evaluated the parameterization of energy and water
fluxes to/from the land-atmosphere interface using many
land surface schemes [Henderson-Sellers et al., 1995]. The
Global Soil Wetness Project (GSWP) I and II are other
such model intercomparison projects to assess the quality
and performance of different land surface schemes
(LSS) and estimate land surface variables on global scales
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[Dirmeyer et al., 1999, 2006]. Another such land surface
scheme intercomparison project focused on river hydrology
and snow simulation was carried out by Boone et al. [2004]
over the Rhone River.
[5] Does the complexity of the LSM parameterizations

contribute to model performance differences for land sur-
face simulations? Does the model ensemble mean soil
moisture from different LSMs perform reasonably better
compared to any individual model as concluded by Guo et
al. [2007]? To answer the above questions, this paper
focuses on three different LSMs with different model
parameterizations and analyzes the soil moisture simulation
results from them over the Little River Experimental Water-
shed (LREW), Georgia. This paper is the second in the series;
in the first work [Sahoo et al., 2008] we compared the
Advanced Microwave Scanning Radiometer-Earth Observ-
ing System (AMSR-E) satellite retrieved soil moisture
results over LREW using two different retrieval methods
with the field observed soil moisture data. The first paper
was focused on assessment of the observed remote sensing
data. In contrast, the present paper focuses on land surface
modeling and tries to look further at the roles of model
complexity, forcing data sets and land surface conditions
in order to answer the differences in the land surface
simulation results. Here, we integrate the LSMs generating
hourly output at 1-km spatial resolution. The availability
of high quality and fine spatial and temporal (every 30
minutes) field observed data sets in this study is advanta-
geous to perform this comprehensive comparison study.
Our ultimate objective is to perform soil moisture data
assimilation using observations and improved model sim-
ulation results. Hence more emphasis has been given to
soil moisture in this paper and the model performance has
been evaluated based on that. This model intercomparison
study differs from those of the PILPS and GSWP. Unlike
the PILPS and GSWP, this study focuses on local-scale
hydrologic processes at high spatial and temporal scales
over a study location in a humid climate and has the
objective to find a better land surface model for soil
moisture data assimilation study at local scale.
[6] Description of the models and their physical processes

are briefly summarized in section 2. The study area and field
observation data sets are described in section 3. Brief
description about the model input data sets and the model
setup are given in section 4. The model simulation results
and discussion are presented in section 5. Finally, the
conclusions are provided in section 6.

2. Land Surface Models

[7] There are three LSMs used in this study. They are
(1) the Hydrological improvements to the Simplified
Version of the Simple Biosphere Model (HySSiB [Mocko
et al., 1999; Sud and Mocko, 1999]); (2) the National
Centers for Environmental Prediction (NCEP) Noah Land
Surface Model Version 2.7.1 (Noah 2.7.1, hereafter Noah
[Ek et al., 2003]); and (3) the National center for Atmo-
spheric Research (NCAR) Community Land Model Version
3 (CLM3.0, hereafter CLM [Dai et al., 2003]). A summary
of the model differences is listed in Table 1. HySSiB and
Noah are ‘‘second generation’’ LSMs, primarily concerned
with calculation of the surface energy and water balances.

CLM is ‘‘third generation’’ in that it also maintains a carbon
budget and explicitly represents the controls that photosyn-
thesis exerts on water and energy in the soil-vegetation-
atmosphere system. As a basic requirement for any model
intercomparison study, all the three models were simulated on
the same LIS platform/environment (except CLM) and forced
by identical atmospheric forcing and land surface parameters.

2.1. LIS Architecture

[8] The NASA/Goddard Space Flight Center’s Land
Information System (LIS [Kumar et al., 2006]; http://
lis.gsfc.nasa.gov/) is built upon Global (GLDAS [Rodell
et al., 2004]) and North American (NLDAS [Mitchell et al.,
2004]) Land Data Assimilation Systems (http://ldas.gsfc.
nasa.gov). LIS features a high performance and flexible
design, provides infrastructure for data integration and
assimilation, and operates primarily on an ensemble of land
surface models for execution over user-specified regional or
global domains. The LIS software is designed within an
object-oriented framework, with explicit abstract interfaces
defined for customization and extension to different appli-
cations. LIS is a flexible and expandable system and it can
be customized to incorporate more user defined land surface
schemes, atmospheric forcing and land surface parameter
data sets. All the land surface models (LSMs) in LIS
simulate energy and water variables (e.g., soil moisture
(both liquid and frozen), soil temperature, skin temperature,
runoff) and fluxes (e.g., evaporation and transpiration) at
1-km (fine) to 25-km (coarse) spatial resolutions, and at
one-hour or shorter temporal resolutions [Zhan et al.,
2004]. LIS also follows the Assistance for Land Modeling
Activities (ALMA [Polcher, 2000]) convention, which is a
common data and metadata standard used among the land
surface community to denote energy and water variables.
The version 4.3.2. of LIS is used in this study.

2.2. HySSiB Model

[9] HySSiB is a biophysical model designed to simulate
land surface processes realistically and calculate radiation
absorption, reflection, and provide fluxes of momentum,
and sensible and latent heat [Mocko and Sud, 2001]. The
original version of the HySSiB (known as SSiB [Xue et al.,
1991]) got its lineage from the Simple Biosphere Model
(SiB) [Sellers et al., 1986] with reduced physical parameters
and improved computational efficiency. A major difference
of HySSiB from the original SSiB of Xue et al. [1991] is its
distinct conceptual architecture of snow pack and radiative
transfer through snow. It also includes an orography-based
surface runoff scheme and interaction with a water table
below the third soil layer. HySSiB includes 3 soil layers
with lower boundaries at 2 cm, 150 cm, and 350 cm below
the surface. HySSiB considers the rooting depth at 100 cm
below the surface [Oliveira et al., 2006]. It has one canopy
and one snow layer. It has eight prognostic variables,
namely soil wetness in 3 soil layers, water stored on canopy
and ground and temperature at the canopy, ground surface
and deep soil layers [Xue et al., 1996]. The equation for
canopy interception is based on conservation of water. It
uses a finite difference approximation and a discretization of
Darcy’s law for vertical flow of water between soil layers.
Soil parameters are a function of a small set of soil types.
The drainage of water out of the bottom layer includes the
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water due to gravitational percolation and baseflow sug-
gested by Liston et al. [1994]. The temperature of the
canopy is based on the energy conservation equation
whereas the surface and deep soil temperatures are solved
using the force-restore method [Deardorff, 1978]. The mass
and energy transfers between land surface and atmosphere
are represented using a resistance formulation. The water
stress term includes the stomatal resistance to the atmo-
sphere, soil water potential and vapor pressure deficit. The
stomatal resistance in this model is based on Jarvis [1976].
The soil water potential is taken from the empirical rela-
tionship of Clapp and Hornberger [1978]. The resistance
between the canopy and the reference height is based on
similarity theory. The resistance to the water transfer from
the surface soil layer to the canopy layer includes an
aerodynamic resistance and a soil surface resistance. The
aerodynamic resistance is based on its relationship to the
Richardson number [Xue et al., 1996].
[10] The HySSiB soil layer boundaries and rooting depth

are prescribed via a lookup table as a function of vegetation
type. The lookup table also includes all of the soil param-
eters, aerodynamic parameters as well as stomatal resistance
coefficients, roughness and canopy heights, vegetation
fraction, leaf reflectance and transmittance, greenness, and
leaf area index (LAI).

2.3. Noah Model

[11] The Noah LSM gets its lineage from the Oregon
State University (OSU) LSM originally developed in the
1980s at OSU [Mahrt and Pan, 1984]. It has been upgraded
and extended by the National Centers for Environmental
Prediction (NCEP) and its collaborators [Chen et al., 1996].
This model has been validated through many model inter-
comparison studies; both in coupled [Betts et al., 1997; Ek
et al., 2003] and uncoupled [Wood et al., 1998; Schlosser et
al., 2000; Robock et al., 2003] studies. It has been imple-
mented in operational weather and climate models because
of its moderate complexity and computational efficiency.
This model has a vertical soil profile that extends two
meters below the surface. This vertical profile is partitioned
into 4 soil layers with lower boundaries at 10 cm, 40 cm,
100 cm, and 200 cm below the surface. The rooting depth of
the Noah model is fixed at 100 cm, which includes top three
soil layers. It has one snow layer and one canopy layer. The
prognostic variables include soil moisture and temperature
in soil layers, water stored on the canopy and the snow
stored on the ground [Chen and Dudhia, 2001]. The physics
of vertical water mass movement between the soil layers is
governed by the mass conservation law and the diffusive

form of the Richard’s law whereas the infiltration is gov-
erned by a conceptual parameterization for the sub-grid
treatment of precipitation and soil moisture [Schaake et al.,
2004]. At the bottom of the soil layers, drainage is only due
to gravitational percolation as the hydraulic diffusivity is
zero. The total evaporation includes the direct evaporation
from the top soil layer, the evaporation from the canopy
intercepted water and transpiration. The surface skin tem-
perature is determined from surface energy balance equation
representing combined ground-vegetation surface. The soil
layer temperature is solved using the Crank-Nicholson
scheme. The ground heat flux is determined using diffusion
equations for soil temperature [Chen and Dudhia, 2001].
This study includes the community version of the one-
dimensional Noah model, version 2.7.1.
[12] The Noah model uses a vegetation lookup table for

static vegetation parameters such as minimum canopy
resistance, solar radiation term for canopy resistance, vapor
pressure deficit, threshold snow depth, roughness length and
leaf area index. It uses a soil lookup table for static soil
parameters. In this case, we used soil types map described in
Zobler [1986].

2.4. CLM

[13] CLM is a community model that combines features
from the Land Surface Model (LSM) of Bonan [1996],
the Biosphere-Atmosphere Transfer Scheme (BATS) of
Dickinson et al. [1986] and the 1994 version of the Chinese
Academy of Sciences Institute of Atmospheric Physics
LSM (IAP94 [Dai and Zeng, 1997]). The current CLM
includes 10 soil layers with telescoping layer boundaries
approximately at 1.8 cm, 4.5 cm, 9.1 cm, 16.6 cm, 28.9 cm,
49.3 cm, 82.9 cm, 138.3 cm, 229.6 cm, and 342.3 cm below
the surface. It has one canopy layer and one to five snow
layers depending on the snow depth. CLM focuses on
biogeophysics of the land surface and includes vegetation
dynamics and river routing modules. The water intercepted
by canopy is calculated from a mass balance equation. The
water flow within the snow layers is by an explicit scheme
which permits a portion of liquid water over the holding
capacity of snow to percolate into the underlying layer. The
water flow from the bottom of the snow layer is available
for infiltration into soil and for runoff [Dai et al., 2003].
CLM runoff includes the surface and baseflow. CLM uses
the conceptual TOPMODEL (a topography based hydro-
logical model which compromises between fully distributed
process complex model and lumped empirical simple mod-
els [Beven et al., 1995; Campling et al., 2002]) approach to
parameterize the surface run-off and a discretized version of

Table 1. Basic Differences Among the Three Land Surface Models

HySSiB Noah CLM

No. of soil layers 3 4 10
Soil layer
boundaries (cm)

2, 150, 350 10, 40, 100, 200 1.8, 4.5, 9.1, 16.6, 28.9,
49.3, 82.9, 138.3, 229.6,
342.3

Model physics Uses mass conservation
law, vertical discretized
Darcy’s law

Uses mass conservation
law, diffusive form of
Richard’s equation

Water conservation at
canopy and soil layer,
vertical discretized
Darcy’s law

Reference Mocko and Sud [2001] Ek et al. [2003] Dai et al. [2003]
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Darcy’s law for vertical downward flow of water within soil
layers [Oleson et al., 2004]. The baseflow includes bottom
drainage, saturation excess and the subsurface lateral runoff.
The ground albedo includes the soil and canopy albedo (and
snow over snow surface). It applies a two-stream radiative
transfer approximation for canopy albedo [Sellers and
Dorman, 1987]. Soil albedo is a function of soil color and
moisture. The snow albedo is a function of snow age, grain
size, solar zenith angle, pollution and the amount of fresh
snow. The vapor flux between the reference height and
the canopy is calculated iteratively using Monin-Obukhov
similarity theory [Bonan et al., 2002]. Total evapotranspira-
tion includes the evaporation from the canopy intercepted
water, transpiration through vegetation and direct evapora-
tion from the ground. The canopy temperature is calculated
by solving the foliage energy conservation equation using the
Newton-Raphson iteration method. The soil and snow heat
transfer is based on the heat diffusion equation. The heat flux
at the surface is calculated using the energy balance equation
at the surface where as the heat flux at sub-surface is
described by the Fourier law for heat conductance and the
heat flux value is zero at the bottom of the soil column.
[14] CLM addresses sub-grid variability through the use of

tiles. Each grid cell is divided into any number of tiles, each
tile consisting of a single land cover type. Each vegetation
land cover includes up to four plant functional types (PFTs
[Bonan et al., 2002]). Energy and water balances are calcu-
lated separately for each tile at each time step. The tiles
interact directly with the mean atmospheric grid condition
over the respective tiles, but do not interact with each other.
The values over a grid box are areally weighted averages of
all the tiles inside the grid [Dai et al., 2003].
[15] Like HySSiB and Noah, CLM also uses a vegetation

lookup table for time invariant vegetation parameters. These
include the ratio of momentum roughness length to canopy

top height, ratio of displacement height to canopy height,
characteristic of leaf dimension, photosynthetic pathway,
maximum rate of carboxylation at 25�C, slope of conduc-
tance to photosynthesis relationship and quantum efficiency
at 25�C, visible and infra-red reflectance and transmittance
from leaf and stem, leaf orientation index and rooting
distribution parameter. This study includes the version 3.0
of the CLM.
[16] Some of the equivalent features among the three

models are that (1) all three models used for this study
conserve energy and water at each time step and (2) they
also use the discretized Darcy’s law for vertical water
movement between soil layers. The major differences are
(1) number of soil and snow layers (SSiB has 3 soil and 1
snow layer, Noah has 4 soil and 1 snow layer, CLM has 10
soil and 5 snow layers); (2) complexity of the models (CLM
is a complex third generation model where as HySSiB and
Noah are second generation models); and (3) parameteriza-
tion (each model uses its own soil and vegetation lookup
table for soil and vegetation static values for different soil
and vegetation types). In contrast to Noah and CLM,
HySSiB does not use the input soil data set (described in
section 4.2), but finds all the soil parameters from the
lookup table as a function of vegetation type.

3. Description of Study Area and In-Situ Data
Sets

3.1. Study Area

[17] The Little River Experimental Watershed (LREW)
located near Tifton, Georgia (Figure 1) is one of the four
designated watersheds selected to calibrate and validate the
AMSR-E satellite soil moisture observations. It has high
temporal and spatial resolution in-situ soil moisture obser-
vations. The watershed encompasses 334 km2 area, includ-
ing seven gauged sub-watersheds ranging in size from 3 to
115 km2. It is in the headwaters of the Suwannee River
Basin that begins in Georgia and empties into the Gulf of
Mexico. The Little River is a tributary of the Withlacoochee
River which is one of the two main tributaries of the
Suwannee River. The LREW has flat topography with broad
flood plains [Sheridan, 1997].
[18] The watershed land use is a mixture of row-crop

agriculture, pasture and forage production, upland and
riparian forest. It consists of approximately 36% forest,
40% crops, 18% pasture, and the remaining area is wetlands
and residential areas. The major crops in the area are
peanuts and cotton. Other crops include tobacco, corn,
soybeans, melons and some vegetable crops. Swamp hard-
woods with thick vegetation occur along the stream edges
[Bosch et al., 2006]. Extensive land use information and
physical characteristics of this LREW have been described
in Williams [1982], Sheridan and Ferreira [1992], and
Perry et al. [1999]. The dominant soil type is sandy loam
that has a sandy surface layer and loamy subsoil. Most of
the soils are well drained and they have fairly low water
holding capacities (10 to 30%) [Hubbard et al., 1985].
[19] The area experiences long, hot, humid summers and

short mild winters. The average annual precipitation is
approximately 1200 mm. Precipitation in this region is
poorly distributed and typically occurs in short duration

Figure 1. Little River Experimental Watershed (LREW),
Tifton, Georgia [from Cashion et al., 2005]. The in-situ soil
moisture measuring instruments have been installed at some
of the rain-gauge sites.
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high-intensity thunderstorms with relatively small spatial
extent during the summer months [Bosch et al., 1999].
[20] There is a network of 35 tipping bucket precipitation

gauges located within the LREW which record the cumula-
tive rainfall every 5 minutes. The spacing between the
precipitation gauges varies from three to eight km
(Figure 1). There is also a Soil Climate Analysis Network
(SCAN) site available within the watershed, described in
detail below. As a part of the AMSR-E calibration and
validation project, a network of Steven-Vitel hydra probe
soil moisture instruments (http://www.stevenswater.com/
soil_moisture_sensors/index.aspx) have been installed at
some rain gauge sites since 2001 to monitor soil water
continuously at 5-, 20-, and 30-cm depths [Cashion et al.,
2005]. The detailed description of the soil moisture mea-
suring sites can be found in Bosch et al. [2006]. Soil water
measurements are taken at half hour intervals at these sites
to conform to the SCAN data. This watershed was also a
part of the Soil Moisture Field Experiment conducted in
June and July 2003 (SMEX03).

3.2. LREW In-Situ Observation Data

[21] Field observation data were collected by the United
States Department of Agriculture - Agricultural Research
Service (USDA-ARS) located at Beltsville, MD [Jackson et
al., 2006]. The data include instant soil moisture from top
5 cm, instant soil temperature and cumulative precipitation
data at every 30-minute interval for the year of 2003 from
17 individual stations located within the LREW (Figure 1).
The data also include some statistics such as mean and
standard deviation of instant soil moisture, instant soil
temperature and cumulative precipitation over all the 17
stations in each 30-minute interval. Limited quality control
and quality assurance have been carried out by USDA-ARS.
Arithmetic averages and averages based on nearest neighbor
weighting are done on the basis of the same set of sensors
and several sensors have been eliminated from this averag-
ing by USDA because of poor or suspicious performance.
The detailed description of these in-situ data can be found in
the work of Jackson et al. [2006].

3.3. SCAN Data

[22] SCAN is a nationwide comprehensive soil moisture
system which have been collecting and providing soil
moisture and soil temperature as well as precipitation, solar
radiation, air temperature, specific humidity, wind speed
and direction data for longer periods of time [Schaefer and
Paetzold, 2001]. The measured data are first automatically
validated against the preset limits and then manually
checked. Measurements of soil moisture at 5-, 10-, 20-,
50-, and 100-cm soil depths are taken wherever possible.
This network is distributed mostly over the agriculture areas
of USA. The data can be obtained from the USDA Natural
Resources Conservation Service Web site (http://
www.wcc.nrcs.usda.gov/scan/). As mentioned earlier, there
is only one SCAN site available within the LREW (Station
2027, Little River, Georgia, 31.50�N and 83.55�W). Since
this SCAN site provides most of the meteorological forcing
data, we used this SCAN site data to validate the North
American Land Data Assimilation System (NLDAS) forc-
ing data needed to drive LSMs. These NLDAS forcing data

have been used as input for all land surface model simu-
lations carried out in this study.

4. Input Data and Model Setup

4.1. Forcing Data

[23] We did not have adequate observed forcing data from
the field experiments to drive the model simulations. So,
North American Land Data Assimilation System (NLDAS)
forcing data were used for the model simulations here. It is a
model-observation combined forcing data product. NLDAS
data provide hourly measurements at 1/8-degree spatial
scale over the North America from 30 September 1996 to
present. The data include air temperature and specific
humidity at 2-m height, wind speed at 10-m height, surface
pressure, downward shortwave and longwave radiation,
convective available potential energy, skin temperature,
total and convective precipitation and photosynthetically
active radiation. It is based on a backbone of Eta Data
Assimilation System (EDAS) and is supplemented with
observations for two major forcing fields: precipitation
and incoming solar radiation [Cosgrove et al., 2003]. The
precipitation observations in the NLDAS data are derived
from a combination of daily National Center for Environ-
mental Prediction (NCEP) Climate Prediction Center (CPC)
gauge based precipitation analyses [Higgins et al., 2000]
and hourly National Weather Service Doppler Radar (WSR-
88D) precipitation analyses. The hourly radar data are used
to temporally disaggregate the daily CPC precipitation data
into hourly scale [Cosgrove et al., 2003]. NLDAS incoming
solar radiation observation data are derived from Geosta-
tionary Operational Environmental Satellite (GOES) data
[Pinker et al., 2003]. Luo et al. [2003] performed a
comprehensive validation study for the NLDAS data sets
using the station observations over the Southern Great
Plains (SGP). They found a high bias in the NLDAS
downward shortwave radiation, but a low bias in the
downward longwave radiation; hence cancellation provides
a lower bias in total incoming radiation. They also found
most meteorological fields other than wind speed agreed
very well with observations. Most importantly, they found
the differences between LSM simulations with the input
NLDAS forcing versus station observations were not pri-
marily due to the atmospheric forcing, but the differences
among physics between the models.
[24] The findings of Luo et al. [2003] give us confidence

that the NLDAS atmospheric forcing data sets will be
adequate for our study here. Since we have a single SCAN
site available within our study region and the SCAN
instrument provides meteorological data sets along with
the soil moisture data, we also performed a validation study
for the NLDAS forcing data. Figure 2 shows the scatter
plots of the hourly meteorological data sets (downward
shortwave radiation, precipitation, air temperature and wind
speed) from NLDAS and SCAN for the year 2003. Down-
ward longwave radiation was not available from the SCAN
site. The bias, root mean square difference (RMSD) and the
correlation have also been given for the comparison of each
forcing variable. In general, the forcing variables are in
good agreement with the SCAN observed data. The most
notable difference between the two data sets is in the
downward shortwave radiation. It has a relatively large
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RMSD and a notable high bias relative to the SCAN
shortwave radiation data (Figure 2a). Luo et al. [2003]
found similar behavior of the NLDAS incoming shortwave
radiation and attributed those differences with the in-situ
observations to morning cloud cover conditions. The SCAN
hourly precipitation data sets show higher precipitation rates
than the NLDAS hourly precipitation rates for heavy
precipitation events (Figure 2b). This is because NLDAS
derives hourly precipitation from daily totals. We also drew
daily time series for precipitation comparisons. The time
series plot of daily precipitation from NLDAS and SCAN
shows a better match between both the data sets (with
RMSD 0.78 mm/hr) except for few large daily precipitation
rates (Figure 3). The air temperature (Figure 2c) data sets
match very well with the SCAN instrument observations.
Wind speed (Figure 2d) data sets for NLDAS and SCAN
vary considerably but the differences are not as systematic
as is the case with the incoming shortwave radiations. These
findings agree well with those of Luo et al. [2003].

4.2. Parameter Data

[25] The primary land surface parameters are concerned
with vegetation (land cover, greenness) and soil (texture,

color, etc.). For land cover, we use the University of Mary-
land’s (UMD) 1-km global land cover product [Hansen et al.,
2000]. This data set has a total of 13 land cover classes
excluding water bodies. The land-sea mask was also gen-
erated from this vegetation classification map. For soil, the
sand, silt and clay fraction and soil color data were gener-
ated at 1-km resolution from the original Food and Agri-
culture Organization (FAO) 5-minute resolution global soil
maps. These above data sets were used for the simulations
of all the models except the soil data set. Soil data were used
only by the Noah model and CLM. HySSiB model uses a
lookup table to find out the soil information as a function of
vegetation type. LIS uses GTOPO30 Digital Elevation
Model (DEM) elevation data from US Geological Survey
(USGS). LIS does the elevation correction by adjusting the
forcing data whenever the elevation differs between LIS and
the atmospheric model which produced the atmospheric
forcing data. All three models were integrated using the
same soil and vegetation parameter data sets, but the
procedures used to estimate model parameters were model
specific. The Noah model required additional parameters
such as a quarterly albedo climatology, monthly greenness
fraction climatology, maximum snow albedo, and bottom

Figure 2. Scatter plots of hourly atmospheric forcing from NLDAS and SCAN measurements at SCAN
site for the year 2003. (a) Downward shortwave radiation (W/m2), (b) total precipitation (mm/hour),
(c) air temperature (K), and (d) wind speed (m/s).
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temperature without elevation correction. Similarly, CLM
required canopy height and vegetation classification lookup
tables, Leaf Area Index (LAI) and Stem Area Index (SAI)
data sets. For the calculation of the LAI climatology, the
Moderate Resolution Imaging Spectroradiometer (MODIS)
1-km LAI data were preferred over the Advanced Very
High-Resolution Radiometer (AVHRR) 16-km LAI data
because of the better spatial resolution in the earlier one.
The MODIS LAI data were collected from Boston Univer-
sity [Yang et al., 2006]. The SAI climatology was calculated
from LAI data using the methods described in Sellers et al.
[1996] and Los et al. [2000].

4.3. Model Initialization

[26] Improper model initialization can produce erroneous
model output results. We adopted one of the model initial-
ization methods described in Rodell et al. [2005]. NLDAS
input forcing data are available from October 1996. We used
five years of NLDAS input forcing data (from January 1997
to December 2002) to spin up the model state variables by
looping three times through the 5 years of forcing data (a
total 15 years of spin-up). Then the climatology state was
calculated from the mean of the outputs of five January
months of the last five years to produce initialization
conditions for 1 January 2003. This approach is one of
the better ways of initializing a land surface model to reduce
the occurrence of unrealistic extremes in the initialization
[Rodell et al., 2005].

4.4. Model Simulation

[27] All three models were integrated retrospectively
from 1 January to 31 December 2003 at 1-km spatial
resolution over a region bounded by 83.38�–84�W longi-
tude and 31.11�–31.88�N latitude (62 � 77 km domain).
The model time step was 15 minutes with model output
saved every hour. The NLDAS retrospective forcing was
hourly, so forcing variables were interpolated to 15-min
intervals. The solar zenith angle interpolation scheme based

on the solar zenith angle was used for this temporal
interpolation to avoid the error introduced by a simple
linear interpolation scheme. Table 2 shows the details of
the model setup.

5. Results and Discussion

5.1. Scale Issues and Preprocessing of Results

[28] The simulation results from the three models have
been compared for all simulated variables except the surface
soil moisture where we also used the in-situ observations. It
is important to discuss the issues associated with spatial,
temporal and vertical resolutions when we are comparing
soil moisture data sets from different sources. The field
measurements were carried out at point scale whereas the
models simulated the land surface processes averaged over
1-km spatial grids. So, instead of comparing the point
observations with the grid averaged model simulations,
we created a composite average of all the observed data
from all the stations in the watershed and compared this
composite soil moisture with the averaged soil moisture
from all the corresponding grid points for each LSM. A
similar kind of approach has also been used when data were
from multiple sources [e.g., Vinnikov and Yeserkepova,
1991; Entin et al., 2000; Robock et al., 2003; Schaake et
al., 2004; Reichle et al., 2004; Prigent et al., 2005]. Also,
this region is topographically very flat and the soil moisture
spatial variation is not large over this region [Cashion et al.,
2005]. Thus spatial averaging of soil moisture over this
watershed is reasonable for this study. We had complete soil
moisture observations from 8 measurement stations for the
year 2003. So, we also used corresponding 8 model grids
for this comparison study. For all other model-simulated
variables, we also used the spatial averaging for same 8 grids
to reduce any model uncertainties at local grid scale.
[29] The model simulation outputs were at 1-hour interval

and the in-situ soil moisture observations were at 30-minute
interval. However, for energy cycle variables, we used daily

Figure 3. Time series plot of daily precipitation (mm/day) from NLDAS and SCAN measurements at
SCAN site for the year 2003.
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averaged values and for precipitation we used daily accumu-
lated values instead of instant values for the comparison
study. This avoids the strong variability and noise associated
at the hourly time scale.
[30] The in-situ soil moisture data are from top 5-cm

layer. The top soil layer depth for HySSiB model is 2 cm
(surface layer). Similarly the Noah model has 10 cm and
CLM model has �2-cm surface layer depths. We did not
change the model soil layer depths for various reasons.
First, we wanted to use the default model structure, param-
eterization and physics for each model for this study.
Second, we had discussions with many model develop-
ers/users. According to them, if the model top soil layer
depth is changed, then it affects other model layers/
parameterization and it completely becomes a new model.
Hence it requires extensive evaluation and testing before it
can be used with changed soil layer thickness. Third, we
simulated the Noah model with different top soil layer
thickness and compared the results (figure not shown
here). We did not find any significant difference in the

Noah model results for different top layer thickness when
the results were expressed in % vol/vol.
[31] Previous studies have shown very high vertical

correlations of soil moisture variability within top 20-cm
soil layer [Wigneron et al., 1995; Calvet et al., 1999;
Prigent et al., 2005]. We also assumed that the soil moisture
variability has very high vertical correlation within top
20-cm soil layer for this study. Without this assumption, it is
hard to directly compare the soil moisture data from
different models with different top soil layer thickness. At
the same time, we recognize the fact that this is a qualitative
and crude assumption. So, this assumption can add some
source of error in the model intercomparison results.

5.2. Results and Analysis

5.2.1. Soil Moisture
[32] Figure 4 shows the daily time series plots of the top

layer soil moisture simulation results from the LSMs (10 cm
for Noah, 1.8 cm for CLM and 2 cm for HySSiB) along
with the observed Little River Watershed in-situ (5 cm) soil
moisture data for the year 2003. Figure 4 also includes the
multimodel mean soil moisture, which was calculated
taking the arithmetic mean of the three models. It is very
clear from this plot that the daily soil moisture peaks from
all sources match very well corresponding to daily precip-
itation peaks (shown in Figure 3). A few interesting points
can be noted from Figure 4. First, the models and observa-
tions show higher soil moisture during the spring season of
the year because of the consistent rainfall events during the
spring over this watershed. Second, HySSiB and Noah
simulate higher soil moisture values throughout the year
compared to observations irrespective of different top soil
layer thicknesses for the two models. Third, the CLM soil
moisture values are very sensitive to the precipitation
forcing as compared to those of other two models and it
dries down to a minimum top layer soil moisture threshold
value very fast after a precipitation event is over (�couple

Table 2. Initial Model Setup for the GLDAS/LIS Model Runs

Land surface model (LSM) Noah, CLM, HySSiB
Base forcing NLDAS
Land cover type University of Maryland’s

global 1-km land cover map
Soil classification map Food and Agriculture

Organization
Maximum number
of tiles per grid

13

Time step of the run 15 min
Latitude range 31.11�N to 31.88�N
Longitude range 84.00�W to 83.38�W
Output data resolution 1 km
Output interval to write
the output files

1 hr

Output data format Binary

Figure 4. Daily soil moisture time series plots from Noah (10-cm layer), CLM (2-cm layer), HySSiB
(2-cm top layer), in-situ measurements (5-cm layer), and Arithmetic Model Ensemble Mean from Noah,
CLM, and HySSiB over the Little River Watershed.
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of days). This high sensitivity of CLM soil moisture data is
because the model soil layer structure has a thin top soil
layer. However, HySSiB soil moisture estimates do not
show the same behavior as those of the CLM model at
daily temporal time scale even though it has an equally thin
top layer. Fourth, the model ensemble mean soil moisture
performs reasonably well with less bias than any individual
model.
[33] To understand the behavior of all the soil moisture

estimates, we use scatter plots of the model daily soil
moisture simulations along with the model ensemble mean
against in-situ observations (Figure 5). A 1:1 line is also
shown in each figure for reference. All the comparison
statistics for the estimates are calculated with respect to in-
situ observations. Figure 5a indicates a high systematic bias
(8.78% vol/vol) for Noah. HySSiB also shows high mean
bias (9.92% vol/vol) compared to the observations
(Figure 5c), but it is not as systematic as that of the Noah
model. Because of these high biases, Noah and HySSiB
show very high RMSD values; 8.92 and 10.62% vol/vol for
Noah and HySSiB model respectively. Yet Noah and

HySSiB show high correlations (0.90 and 0.81 for the Noah
and HySSiB model respectively) with in-situ observations.
In contrast to the other two models, CLM (Figure 5b) has a
lowermean bias (�4.61 vol/vol) and RMSD (6.19% vol/vol).
The lower threshold value for CLM top layer soil moisture
(�2% vol/vol) is frequently reached (Figure 5b), which is
noticeable during the dry down phases in the soil moisture
time series plot (Figure 4).
[34] The multimodel ensemble mean shows the lowest

mean bias (2.70% vol/vol) and RMSD (3.66% vol/vol). The
negative bias in CLM model estimates almost cancels the
positive biases in the Noah and HySSiB model estimates,
keeping the multimodel ensemble mean bias very low. The
correlation values for all data sets range from 0.80 (CLM) to
0.90 (Noah model). The multimodel ensemble mean has
comparable correlation value (0.86) as those of the individ-
ual model estimates. Since some of the models have
systematic high bias even though they have high correla-
tions, we removed the mean biases from all the model
simulations and recalculated the RMSD for all the data sets.
The RMSD got reduced considerably for the Noah (from

Figure 5. Daily soil moisture scatter plot averaged over eight in-situ stations in the Little River
Watershed. (a) Noah versus in-situ, (b) CLM versus in-situ, (c) HySSiB versus in-situ, and (d) Arithmetic
Model Ensemble Mean versus in-situ.
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8.92 to 1.60) and HySSiB (from 10.62 to 3.77) soil moisture
results in this case (figures not shown in this paper).
Moreover, the Noah model estimates scattered around the
1:1 reference line indicating perfect model estimates.
[35] We also looked at the performances of the individual

model and multimodel mean soil moisture estimates at
individual measuring stations. Figure 6 shows a comparison
of the skill scores of the original model-simulated soil
moisture products along with the multimodel mean for
8 individual watershed stations and the station-averaged
data set. These skill scores are calculated on the basis of
hourly soil moisture values for the year 2003 in contrast to
the above graphs where we used daily averaged soil
moisture values. We will discuss more about the hourly
soil moisture estimates later in a separate section. As can be
seen, the multimodel mean gives bias (3 to 8% vol/vol),
RMSD (5 to 10% vol/vol) and correlation (0.6 to 0.8) skills
as good or better than those of the individual model results
at each individual observation station as well as for the
station average. CLM shows a lower magnitude of bias than
the multimodel mean at half the stations and lower RMSD
at three stations. Noah shows superiority of time series
correlation at all stations. Since any single model is not
consistent at all individual sites for all the skill scores, the
multimodel mean across all the models provides the best
overall estimates in our case. Earlier, Guo et al. [2007]
considered 17 different model derived soil moisture data
products (simple to very complex models) and verified the
performance of each model along with the multimodel
ensemble mean over Illinois, China, India, Mongolia and
Russia. They concluded that the multimodel ensemble mean
outperformed most individual products in simulating the
phasing of the annual cycle, interannual variability and
magnitudes in observed soil moisture. They also found that
the multimodel ensemble mean got improved with the
inclusion of a product of higher correlation to observations
or lower error while there was no degradation in the multi-
model ensemble mean when a product with relatively poor
skill was included. Our results here supplement the results
found by Guo et al. [2007]. However, the multimodel mean
in our case is calculated only from three land surface
models. So, it is not statistically significant to provide any
solid conclusion in our case. Hence our findings should not
be used as a scientific principle exclusively based on our
results.
[36] To analyze the spatial distribution of soil moisture

and precipitation-soil moisture coherence patterns, we
chose a time period of wetting and drying dynamics (16 to
19 July) over the Little River Experimental Watershed area
(approximately 50 km by 75 km area). Figure 7 shows daily
NLDAS precipitation forcing (column 1) and corresponding
daily soil moisture difference images from Noah (column 2),
CLM (column 3) and HySSiB (column 4). All these
spatial images are in 1-km spatial resolution. Same color
scale has been used for easier visual recognition of the
changes in the spatial images. The white region in the
precipitation image for 19 July represents the zero precip-
itation area. Looking at the precipitation panels, there is
heavy precipitation in the southeast part on 17 July; in the
north-east and central parts on 18 July and complete dry
down phase everywhere on 19 July over the watershed. The
spatial pattern of soil moisture for all the three models

corresponds very well to the spatial distribution of the
precipitation events with few exceptions. HySSiB does
not show very distinct soil moisture patterns as we see from
Noah and CLM though the changes in soil moisture because
of precipitation events is still visible in HySSiB simulations.
However, the soil moisture difference values are higher
(both positive and negative (more than 7% vol/vol)) in
HySSiB as compared to the other two models. This indi-
cates that the HySSiB model top layer holds lot of water
after precipitation events before it is removed rapidly
through infiltration to deeper soil layers and/or evaporative
processes.
5.2.2. Water Cycle Variables
[37] Figure 8 shows daily time series plots of other water

cycle parameters (surface runoff [Figure 8a], subsurface
runoff [Figure 8b] and evaporation [Figure 8c]) from the
three models for the year 2003 spatially averaged over the
8 in-situ stations in the Little River Watershed. Each daily
surface runoff (Qs) peak (Figure 8a) for all three models
corresponds well to each of the precipitation events (Figure 3)
indicating direct response of model surface runoff to the
precipitation events. Subsurface runoff peaks can be seen
corresponding to only heavy precipitation days, especially
during frequent precipitation in the spring season. This
indicates that all the models have high water holding
capacity to retain some water in their soil layers and they
produce sub-surface runoff only during high precipitation
events. HySSiB immediately produces substantial runoff
during heavy precipitation events, losing water through
surface runoff before it enters the soil (Figure 8a). At the
same time, we have noticed the high top layer soil
moisture estimates for HySSiB during precipitation events
(Figure 4). Hence HySSiB produces very low subsurface
runoff (Figure 8b). Contrast to that, the Noah model has
almost no surface runoff (Figure 8a) but it has very high
top layer soil moisture (Figure 4). Since the Noah top
layer is thick (10 cm), it accommodates greater infiltration
and produces more subsurface runoff than HySSiB. In
contrast, CLM shows very different characteristics for
hydrologic variables estimations. The dry down of CLM
soil moisture is compensated by intermediate surface
runoff and very high subsurface runoff. This high subsurface
runoff during precipitation events could be because CLM
subsurface runoff has more pathways than the other models.
[38] The evaporation patterns are also very different

among the three models (Figure 8c). All models exhibit
the expected seasonal pattern of evaporation, with higher
evaporation during the summer and lower evaporation
during the winter season. On short time scales, CLM
evaporation is very sensitive to the precipitation patterns.
Along with the surface and subsurface runoff, evaporation
also removes some CLM top layer soil water immediately
during the precipitation events. HySSiB shows a similar
kind of evaporation pattern as those for CLM. Noah shows
comparatively low variability in evaporation estimates than
other two models. Hence the evaporation is less from the
top layers of CLM and HySSiB and they show many
dry-down events during the lower precipitation season
(August–October). Moreover, the transpiration through
vegetation is also shut down because of low root zone soil
moisture for the CLM and HySSiB models. The Noah
model holds more water in the top layer due to the thicker
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Figure 6. (a) Mean bias, (b) RMSD, and (c) correlation of Noah, CLM, HySSiB, and Arithmetic Model
Ensemble Mean soil moisture for eight in-situ stations and station-averaged data set.
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top layer and the evaporation still goes on for the Noah
model when the other two models show dry down phases,
hence the Noah model shows an opposite behavior to that
of the other two models (e.g., 8 to 14 September, 15 to
21 September, 26 September to 6 October in Figure 8c).
5.2.3. Energy Cycle Variables
[39] Figure 9 shows the daily time series plots of the

energy budget parameters for the same in-situ stations and
time period as in Figure 8. The incoming energy at the
earth’s surface is indicated with positive sign and the
outgoing energy is negative. All models show very similar
net solar radiation patterns for the whole time period
(Figure 9a). Since downward shortwave radiation is the
same for all models, the net solar radiation indirectly
represents the albedo values used by the models. The net
solar radiation values from all the three models are distinctly
different during the spring season (April–June). CLM
produces the lowest net surface solar radiation during spring
season. This implies that CLM exhibits higher surface
albedo than the other two models. During the other seasons,
the values are similar to one another. In the case of the net
surface longwave radiation, Noah and HySSiB match very

closely (Figure 9b). CLM estimates match the other two
models except during the phases of top layer soil moisture
dry down. During these days, CLM shows increasing soil
and surface temperature, which contributes significantly to
the lower net longwave radiation.
[40] Figures 9c and 9d represent the daily latent and

sensible heat flux. These fluxes reciprocate each other for
all three models. Variability of latent and sensible heat flux
depends on the amount of energy and water available at the
earth’s surface. Latent and sensible heat flux variability is
very high for CLM as compared to the other two models for
this time period. For reasons stated previously, CLM
produces relatively high latent heat flux and low sensible
heat flux for any precipitation event. On the other hand,
Noah has the lowest variability. HySSiB exhibits relatively
high variability in heat fluxes. Figure 9e shows the ground
heat flux variability from all the three models. Ground heat
flux is a residual in the energy budget and contributes to
changes in subsurface soil temperature. Noah exhibits the
least variability in the ground heat flux, while CLM shows
high variability. Since all these land surface models close
the energy budget at each time step, the variability of the

Figure 7. Spatial difference image of NLDAS precipitation and corresponding model-simulated soil
moisture results during 16–19 July. There are spatial coherences between the precipitation events and
model soil moisture results.
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Figure 8. Comparison of water cycle variables simulated by Noah, CLM, and HySSiB (a) Surface
runoff (mm/day), (b) subsurface runoff (mm/day), and (c) evaporation (mm/day).
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Figure 9. Comparison of energy cycle variables simulated by Noah, CLM, and HySSiB. (a) Net
shortwave radiation (W/m2/day), (b) net longwave radiation (W/m2/day), (c) latent heat flux (W/m2/day),
(d) sensible heat flux (W/m2/day), and (e) ground heat flux (W/m2/day).
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ground heat flux depends on the variability of other energy
budget parameters. In winter months, the ground loses heat
to the atmosphere in all three models. This indicates that the
total incoming energy flux is less than the total outgoing
energy flux in winter season; spring and summer show the
opposite situation.

5.3. Impact of Scaling on Soil Moisture

[41] Boone et al. [2004] discussed the impact of spatial
scaling on model-simulated water and energy cycle param-
eters. In this section, we discuss temporal scaling of the
model soil moisture simulations. As shown in section 5.2.1,
there exist systematic biases in some LSMs on daily time
scales. Our objective in this section is to look at the original
hourly soil moisture model outputs in contrast to the daily
soil moisture simulations and provide our critical comments
from data assimilation point of view. Figure 10 shows the
scatter plot of the hourly soil moisture data from 3 individ-
ual models and their arithmetic ensemble mean against the
in-situ observations for the year 2003. The corresponding
daily soil moisture scatter plots were shown in Figure 5.
Compared to the daily soil moisture data, the Noah model

hourly soil moisture data show very similar behavior with
systematic high bias and high correlation (Figure 10a). The
lower threshold bound can very clearly be seen for CLM
hourly soil moisture data in Figure 10b. CLM model hourly
soil moisture data also exhibit similar characteristics as
those of the daily soil moisture data with much scatter that
does not appear to reflect a simple systematic bias. In the
case of the HySSiB model, the hourly simulated soil
moisture data show a very clear lower threshold boundary
around 7% vol/vol which is not apparent in the daily soil
moisture scatter plots because of the scaling of hourly
values to daily values (Figure 10c). This characteristic of
HySSiB at hourly scale resembles that of the CLM model.
This confirms that the sensitivity of the top layer soil
moisture to the precipitation events is due to the soil layer
parameterization since we see this complete dry down phase
in CLM and HySSiB model (both have 2-cm top soil layer),
but not in case of the Noah (10-cm soil layer) model.
HySSiB seems to exhibit the diurnal cycle of surface soil
moisture incorrectly, but does well at the daily time scale.
CLM has problems with both diurnal and synoptic dry-

Figure 9. (continued)
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down phases. The hourly multimodel mean (Figure 10d)
shows similar behavior as for the mean daily data (Figure
5d). For all the soil moisture products, the mean bias and
RMSD are higher (except CLM mean bias) and the corre-
lation is lower at hourly scale than those at daily scale. This
is expected since the uncertainty for soil moisture at hourly
scale is supposed to be higher than that at the daily scale.
Table 3 shows the statistics from these comparisons, along
with the results after a simple bias correction for each
model. Bias correction reduces RMSD by 70% or more
when dry-down phases are well modeled.

6. Conclusion

[42] In this paper, we performed comparison studies of
water and energy cycle variables simulated by three differ-
ent land surface models. The offline simulations were
conducted using HySSiB, Noah and CLM land surface
models driven by NLDAS atmospheric forcing data over
the Little River Watershed, Georgia region from October
1996 to September 2003. The model simulation results for
the year 2003 were compared to the in-situ observations.
Important differences among the three land surface models
were the complexity of the models, the top soil layer

thickness and the layer parameterizations in each model.
When NLDAS precipitation forcing was compared with the
corresponding SCAN measured meteorological parameters,
we found reasonable agreement among the data sets from
the two sources. Model simulations at 1-km spatial resolu-
tion and hourly temporal resolution were good enough to
look at the model responses to individual precipitation
events and compare simulation results from the three
models.
[43] All the three land surface models simulated soil

moisture realistically and exhibited close correspondence
in soil moisture results to each precipitation event in space
and time. The model layer parameterization played a major
role in soil moisture simulation results at hourly scale. CLM
was found to be overly sensitive to climatic conditions.
CLM and HySSiB both overestimated the magnitude of
surface soil moisture variations on dry-down time scales.
The scatter plots of the individual model and the arithmetic
model ensemble mean soil moisture against the in-situ
observed soil moisture were conducted irrespective of the
location of the in-situ sites. The model mean performed well
at the hourly and daily scale. The multimodel mean soil
moisture also provided comparable skill scores with those
of any individual model even at individual in-situ measuring

Figure 10. Same as Figure 5 but for hourly soil moisture data.
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sites, while avoiding some of the systematic problems
exhibited by individual models. Our results supplement
the results found by Guo et al. [2007] though it should
not be used as a scientific principle exclusively based on our
findings since our multimodel ensemble mean is derived
only from three models.
[44] The models showed discrepancies in partitioning the

precipitation water into soil moisture, surface runoff, infil-
tration and evaporation terms. CLM compensated low top
layer soil moisture by high surface and subsurface runoff.
On the other hand, Noah maintained high top layer soil
moisture by near zero surface and lower subsurface runoff.
HySSiB produced high top layer soil moisture and surface
runoff, but very low subsurface runoff. All models exhibited
very similar results in net solar radiation and longwave
radiations. CLM simulated higher albedo as well as higher
surface temperatures. Model physics played a critical role in
partitioning the outgoing energy into latent heat and sensi-
ble heat fluxes pertaining to different climatic conditions.
Models did not agree well in partitioning of latent and
sensible heat fluxes.
[45] We had some difficulties in performing this kind of

comparison study. First, there were no in-situ observations
available for most of the water and energy cycle variables to
compare with the model simulation results. Second, the
NLDAS downward shortwave radiation showed high biases
whereas the NLDAS precipitation forcing values were
lower for most of the heavy precipitation events as com-
pared to those of the SCAN instrument observations. Since
we had the precipitation observations for all the collocated
in-situ soil moisture measurement sites, we chose just one
site (RG63) and replaced the precipitation field in the
NLDAS forcing data with the in-situ observed precipitation
data and re-ran all the three models for that specific point
location only. We found that the model soil moisture values
were higher in the new simulations (figures not shown here)
because the in-situ precipitation data had higher values than
those of the NLDAS precipitation values. However, the
nature of the soil moisture data for all the three models
remained same because both the NLDAS precipitation and
the in-situ observed precipitation data detected all the
precipitation events at the same time/day of the year but
with different values (figure not shown here). Hence we
believe that the agreement or disagreement among the
model-simulated results found in this paper is mostly due
to the different treatments of land surface processes by
different schemes. From the point of view of soil moisture
data assimilation, high time-resolution simulations with
good quality soil moisture estimates and comparable obser-

vation measurements are required. From the hourly scatter
plots, it can be seen that Noah soil moisture with the mean
bias removed can serve as the best model for a data
assimilation study. Noah appears to be the least likely
model to ‘‘fight against’’ the assimilation of observations.
However, when we look at the Noah model parameteriza-
tion, it has a 10-cm-thick top soil layer where as most of the
available remote sensing soil moisture products are from
only the top 2 cm of soil. This inconsistency may be an
important factor to consider while performing the data
assimilation. In the case of CLM and HySSiB, the model
soil discretizations agree better with the character of remote
sensing observations, but these model results are not as well
behaved compared to the Noah model. It is hard to say at
this point which plays a more important role in data
assimilation: better model simulation behavior or the choice
of model soil layer discretization. This question can be
answered in future studies by performing some data assim-
ilation tests with these model simulations.
[46] Modeling studies of local-scale land surface processes

help us to understand the land surface with the goal of
realizing its local-scale applications in water resource man-
agement, climate prediction and disaster mitigation. The
results produced here also motivate us to look further into
land surface model complexity and physics, external factors
like atmospheric forcing and land surface parameters, and to
estimate the relative contribution of each factor on these
local-scale processes in our future study.
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