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Differentiating tidal and groundwater dynamics from barrier island
framework geology: Testing the utility of portable multifrequency
electromagnetic induction profilers

Bradley A. Weymer1, Mark E. Everett1, Chris Houser2, Phil Wernette3, and Patrick Barrineau3

ABSTRACT

Electromagnetic induction (EMI) techniques are becoming
increasingly popular for near-surface coastal geophysical appli-
cations. However, few studies have explored the capabilities and
limitations of portable multifrequency EMI profilers for map-
ping large-scale (101–102 km) barrier island hydrogeology. The
purpose of this study is to investigate the influence of ground-
water dynamics on apparent conductivity σa to separate the
effects of hydrology and geology from the σa signal. Shore-
normal and alongshore surveys were performed within a highly
conductive barrier island/wind-tidal flat system at Padre Island
National Seashore, Texas, USA. Assessments of instrument cal-
ibration and signal drift suggest that σa measurements are stable,
but vary with height and location across the beach. Repeatability
tests confirm σa values using different boom orientations col-
lected during the same day are reproducible. Measurements over
a 12 h tidal cycle suggest that there is a tide-dependent step

response in σa, complicating data processing and interpretation.
Shore-normal surveys across the barrier/wind-tidal flats show that
σa is roughly negatively correlated with topography and these
relationships can be used for characterizing different coastal hab-
itats. For all surveys, σa increases with decreasing frequency.
Alongshore surveys performed during different seasons and
beach states reveal a high degree of variability in σa. Here, it is
argued that surveys collected during dry conditions characterize
the underlying framework geology, whereas these features are
somewhat masked during wet conditions. Differences in EMI sig-
nals should be viewed in a relative sense rather than as absolute
magnitudes. Small-scale heterogeneities are related to changing
hydrology, whereas low-frequency signals at the broadest scales
reveal variations in framework geology. Multiple surveys should
be done at different times of the year and tidal states before geo-
logic interpretations can confidently be made from EMI surveys
in coastal environments. This strategy enables the geophysicist to
separate the effects of hydrology and geology from the σa signal.

INTRODUCTION

Portable multifrequency electromagnetic induction (EMI) pro-
filers have become a popular tool for near-surface geophysical ap-
plications because they are noninvasive, cover large areas over a
short period of time, and are relatively inexpensive compared with
other geophysical techniques. EMI profiling is designed to measure
lateral variations in electrical conductivity σ, along a traverse, as
opposed to sounding techniques that detect vertical variations in
σ with depth (Frischknecht et al., 1991). The most commonly used
source for EMI prospecting is a small current-carrying loop, which

is essentially a magnetic dipole (West and Macnae, 1991). There is a
variety of profilers available on the market including the Geonics,
GSSI, Geophex, Dualem, PROMIS, GF Instruments, and Stratagem
systems. Most profiling techniques operate in the frequency do-
main; however, many acquisition and interpretation procedures
are available in the time domain (Nabighian and Macnae, 1991).
A significant application of dipolar source EMI profiling is the de-
tection of highly conductive ore bodies for mining, and many in-
strumentation and interpretation techniques have been developed
specifically for this purpose (Frischknecht et al., 1991). EMI profil-
ing for other uses is rapidly increasing for applications such as
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groundwater, environmental, and engineering studies (see Huang
and Won, 2000; Everett, 2013). In the coastal environment, the
use of EMI has focused on imaging saltwater intrusion for ground-
water resource management (Nenna et al., 2013). Coastal EMI sur-
veys for other purposes have been underused for several reasons
including lack of awareness of the method by nongeophysicists
and data reliability (see George and Woodgate, 2002). We present
a case study to assess the use of EMI profiling techniques for a
coastal investigation, namely for characterizing large-scale barrier
island hydrogeology at Padre Island National Seashore (PAIS),
Texas, in the southeastern United States. The geologic pattern along
the island is of inherent interest not only for testing EMI methods,
but also for informing coastal managers at the National Park and
policy makers in the State of Texas.

Portable multifrequency EMI systems

Portable multifrequency EMI profilers provide users with the
flexibility of choosing between several operating frequencies, as
well as varying the instrument’s orientation, height, and coil con-

figuration (Won et al., 1996; Huang et al., 2008). Unless otherwise
mentioned, “portable” means a lightweight sensor that is used by
one person and can be operated in a continuous acquisition mode
while walking. Unlike most traditional EMI sensors, which have
separate transmitter (TX) and receiver (RX) coils connected by long
cables, portable multifrequency EMI profilers have a short, fixed
separation between the TX and RX coils. For example, the GSSI
Profiler EMP-400™ contains a TX coil that continuously emits
a waveform containing multiple frequencies within 1–16 kHz band-
width, selectable at 1 kHz increments (Geophysical Survey Systems
Incorporated [GSSI], 2007; Huang et al., 2008). The RX coil mea-
sures the in-phase I and the quadrature (out-of-phase) Q compo-
nents of the time derivative of the secondary magnetic field
(Won et al., 1996). The configuration of the GSSI Profiler EMP-
400 and an example of its use in the field is shown in Figure 1a.
The coil separation s of the instrument is 1.21 m, and the instrument
height h used in this study is approximately 0.70 m. The system
measures I and Q responses in parts per million (ppm), as well
as σa in mS∕m, which is a transform of the I and/or Q raw mea-
surements (McNeill, 1980). The system sensor electronics are con-
trolled by a wireless Bluetooth communications interface that is
incorporated into a TDS RECON-400 personal digital assistant
(PDA). In addition, Global Positioning System (GPS) coordinates
are recorded at each measurement location with a positional accu-
racy of approximately 1 m.
Conventionally, the separation distance, or offset, between TX

and RX coils is important for determining the maximum depth
at which a target can be detected. However, with newer fixed-offset
profilers, the maximum depth to the target is controlled by changing
the operating frequencies. In other words, the depth of investigation
(DOI) for the instrument used in this study is a function of fre-
quency: The lower the frequency is, the deeper the investigation.
The DOI is defined as the maximum depth probed by a geophysics
sensor (Huang, 2005). Despite a fixed offset, EMI profilers record
the earth response at several frequencies (Huang, 2005), although
frequencies below 16 KHz may be within the low-frequency
approximation, and data at different frequencies will be redundant
in resistive environments. The DOI is affected by many other factors
such as sensor sensitivity, operating frequencies, background noise
level (Huang, 2005), and the physical properties (see Everett, 2013)
of the subsurface (e.g., porosity, moisture content, temperature, and
salinity). Nearby lateral variations in subsurface σ also influence the
effective DOI at any given location along the profile. Understanding
how these factors relate to the DOI is important for survey design,
but it is also dependent on the geomorphological environment (flu-
vial, aeolian, glacial, and coastal) under investigation.
Interpretation of EMI data is commonly based on measurements

at a single frequency (Huang and Won, 2000). Here, we focus on
apparent conductivity values measured at three frequencies to dif-
ferentiate variations in σ at depth. Apparent conductivity σa is de-
fined as the conductivity of a homogeneous half-space that would
have produced the same response as that measured over the real
earth with the same sensor, and it is transformed from either the
I or Q response (Won et al., 1996). In this study, we present only
raw EMI σa data and we have not applied any form of postacqui-
sition correction. In conductive environments, portable multifre-
quency EMI sensors can be used for depth sounding because the
frequency-dependent EM data are acquired at relatively high induc-
tion numbers

Figure 1. Overview of the EMI handheld profiler configuration and
conceptualmodel of the relationships betweenvarying hydrology, lith-
ology, and apparent conductivityσa. (a) Profiler parameters (left panel)
and the GSSI Profiler EMP-400 being used in the field (right panel),
where TX = transmitter, RX = receiver, coil separation s ¼ 1.21 m,
height above ground h ¼ 0.7 m, σair and σground are the air and ground
conductivities, respectively (afterHuanget al., 2008). (b)Hypothetical
EMI survey over changing lithology, where lithology A σA is more
conductive that lithology B σB. The EMI “signal” decreases across
the less conductive sediments. (c) Generalized graph depicting varia-
tions in σa with respect to changes in hydrologic conditions. During
dry conditions, the sensor is capable of probing greater depths. Con-
versely, during wet conditions σa is relatively homogeneous, limiting
the sensors ability to distinguish geologic features.
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θ ¼
ffiffiffiffiffiffiffiffiffi
ωσμ

2

r
s; (1)

where θ is the induction number for a plane wave, ω ¼ 2πf is the
angular frequency, σ is the ground conductivity, μ is the magnetic
permeability, and s is the TX-RX offset. The collection of multi-
frequency data at high induction numbers enables mapping σ var-
iations with depth (Huang et al., 2008). However, not all portable
conductivity meters (e.g., Geonics EM31) are based on the high-
induction number assumption. EMI profilers have less capability
to resolve depth variations at low induction numbers (low conduc-
tivity or resistive ground) as the S/N is low in this case. It is im-
portant to note that equation 1 involves a plane wave, but does
have significant validity for the magnetic dipole-dipole configura-
tion used in this study.
A simple conceptual model (Figure 1b) illustrates how σa might

vary with lithology along a barrier island. Figure 1b shows a sketch
of the expected signals from a hypothetical EMI survey over con-
trasting lithologies. Lithology A is more conductive than lithology
B and in a coastal environment, lithology A could represent sea-
water-saturated sand/clay layer underlying a more resistive sand
layer (B). Figure 1c shows examples of how the EMI response
might change across such a contrast. Factors including tides, waves,
the location of the fresh/saltwater interface, and soil moisture con-
tent influence the σa signal. Changes in contrast by the replacement
of freshwater with saltwater can potentially reduce the DOI. During
wet conditions, the EMI sensor does not probe very deeply because
of high σ (e.g., salinity) that strongly attenuates the downward
propagation of the EM field (dotted line). Conversely, during dry
conditions, σ is lower; therefore, the sensor probes to greater depths
(solid line) as the downward propagation is less attenuated.
As described above, attenuation increases with σ, thus reducing

the DOI. The attenuation of penetrating EM fields with depth is
known as the skin effect. EMI depth penetration is constrained
by the conversion of the transmitted electromagnetic energy into
kinetic energy of the mobilized subsurface charge carriers (Huang,
2005; Everett, 2013). A skin depth δ is the depth at which a plane
wave vertically incident upon a half-space has an amplitude that is
1∕e of its incident amplitude (see Singh and Mogi, 2003; Huang,
2005; Everett, 2013), where

δ ¼
ffiffiffiffiffiffiffiffiffi
2

μσω

s
: (2)

The DOI can be less than a single skin depth in areas with complex
geology and/or a considerable amount of cultural noise (Huang,
2005). The skin depths for the various frequencies used, over the
range of conductivities likely present within the study area, are pre-
sented in Table 1. Typical σa values measured along the beach
within the study area range between approximately 50 and
800 mS∕m (seawater is approximately 3200 mS∕m). For these
σa values, the three main frequencies used in this study (i.e., 3,
10, and 15 kHz) correspond to skin depths ranging from approx-
imately 41.1 to 4.6 m. However, assuming the DOI is approximately
proportional to the square root of δ as suggested by Huang (2005),
the lower bound for the DOI at 3, 10, and 15 kHz varies between
approximately 6.4 and 2.1 m. It is important to note that the DOI is
under the sensor, which is approximately 0.7 m above the ground in
this study (see Figure 1a).

Application of EMI methods in coastal studies

The literature on near-surface applied EM geophysics is far
ranging (see Everett and Farquharson, 2012), from modeling and
inversion offerings (McNeill, 1980; Everett and Weiss, 2002; Sa-
saki and Meju, 2006; Santos et al., 2010; Guillemoteau et al.,
2015) to case studies in unexploded ordnance, soil science, and
archeology (Benavides et al., 2009; Sudduth et al., 2010; de Smet
et al., 2012; Pincus et al., 2013). Comparatively few studies have
used EMI methods in coastal environments (Paine et al., 2004;
Seijmonsbergen et al., 2004; Vrbancich, 2009; Christensen and
Halkjær, 2010; Nenna et al., 2013; Delefortrie et al., 2014b), with
most of these focusing on mapping saltwater intrusion. Most of
these studies use Geonics EM31, 34, 38, and similar frequency-
domain sensors; Geonics EM47, 63, and similar time-domain
electromagnetic (TDEM) sensors in addition to various airborne
electromagnetic (AEM) systems. AEM surveys are important
for coastal studies but are beyond the scope of this paper. Previous
coastal EMI studies have explored subsurface σ because it is re-
lated to framework geology (Seijmonsbergen et al., 2004; Vrban-
cich, 2009), classification of coastal wetlands (Paine et al., 2004),
and investigation of coastal groundwater dynamics and pollution
(Goldman et al., 1991; Fitterman and Deszcz-Pan, 1998; Christen-
sen and Halkjær, 2010; Nenna et al., 2013).
Seijmonsbergen et al. (2004) use the EM34 (albeit not a portable

multifrequency EMI profiler) at 20 m station spacing and 20 m coil
separation to acquire a 14.5 km transect along a segment of the
Dutch coast, Netherlands. Using this configuration, the DOI is ap-
proximately 15 m. Results from the study suggest that subsurface σa
can be used as a proxy to distinguish the spatial distribution of Hol-
ocene coastal deposits and previously identified pre-Holocene pa-
leochannels near a former outlet of the Rhine River. Paine et al.
(2004) use the EM38 (a portable EMI profiler) with its approxi-
mately 1 m exploration depth at 20 m station spacing to collect
two shore-normal transects at Mustang Island, Texas, USA. Their
findings suggest that σa generally varies inversely with topography
and that LiDAR and EMI data can be used together for character-
izing different geomorphic environments to improve the accuracy of
coastal habitat classification.
Several coastal studies have investigated saltwater intrusion and

contaminant plumes using EMI sensors other than portable multi-
frequency instruments. For example, Nenna et al. (2013) test the
feasibility of TDEM methods to identify hydraulic communication
between a confined freshwater aquifer and an unconfined saline
aquifer using a Geonics PROTEM 47. Data were acquired using
center loop and offset receiver geometries. The results suggest that
TDEM methods can be used to characterize saltwater intrusion in
coastal aquifer systems and infer the continuity of confining layers
between saturated layers with different water qualities. A different
approach using transient AEM was used by Christensen and Halk-
jær (2010) to map North Sea coastal hydrology at a heavily polluted
site in western Jutland, Denmark, which suggests that transient
AEM systems can be used to delineate the extent of the pollution
plume, the fresh/saltwater boundary, and the complex pattern of
subsurface preferential flow channels along the coast. Although
the above studies demonstrate the value of EMI sensors for coastal
research, most have not examined in detail the effects of changing
hydrology as it relates to framework geology over different spatial-
temporal scales.

EMI utility in barrier islands E349



Research objectives

The purpose of this study is to investigate the performance of a
portable multifrequency EMI profiler for mapping the hydrogeo-
logic structure of a highly conductive barrier island/wind-tidal flat
system at PAIS, Texas, USA. Specifically, the calibration and meas-
urement reproducibility of a GSSI Profiler EMP-400 is assessed
with respect to: (1) tidal influences on σa measurments, (2) detecting
spatial variations in subsurface σa as it relates to framework geol-
ogy, (3) monitoring seasonal changes in groundwater conditions,
and (4) mapping the relationship between different coastal suben-
vironments and topography, alongshore and across the barrier is-
land/wind-tidal flat system. It is proposed that multifrequency
EMI profilers can be used for exploring quantitative performance
characteristics with respect to the fundamental issues in coastal geo-
morphology, such as interactions between framework geology and
modern coastal morphodynamic processes.

DESCRIPTON OF THE STUDY AREA

PAIS and the Laguna Madre wind-tidal flats are located within
the south Texas Coastal Zone, approximately 40 km south-south-
east of Corpus Christi, Texas, USA (Figure 2). This region has been
the subject of numerous studies since the 1940s (Fisk, 1959; Brown
et al., 1977; Morton and McGowen, 1980; Weise and White, 1980;
Amdurer and Land, 1982; Kocurek et al., 1992; Morton et al., 2000;
Stevens et al., 2009; Weymer et al., 2015) investigating various as-
pects regarding the origin, geologic history, hydrology, and/or mor-
phodynamic processes of PAIS and adjacent wind-tidal flats.
Geologic interpretations based on seismic, borehole data, cores,
and hand-dug trenches provide a relative chronology of the geologic
history of the island, spanning most of the Pleistocene (approxi-
mately 1.8 Myr) through the present (Brown et al., 1977; Gradstein

et al., 2008). Much of what is known about the geologic history of
Padre Island is based on studies by Fisk (1959) and the Bureau of
Economic Geology (Brown et al., 1977), and few attempts have
since been made to further investigate the geomorphic evolution
of the island and wind-tidal flats.
The existing premise is during the interglacial stages of the Pleis-

tocene, when sea level was approximately the same as it is today,
inland rivers and streams were connected to a network of deltas
within broad embayments along the shoreline (Brown et al.,
1977). Fisk (1959) suggests that the Pleistocene ravinement surface
in the region of the Laguna Madre Flats was deeply eroded by head-
water tributaries of an entrenched valley system. Within the study
area, there are as many as seven inferred late Pleistocene streams that
cut across the modern barrier island. In addition, Pleistocene river
deposits run parallel to the barrier, beneath the modern wind-tidal
flats and may be part of the ancient delta system (Fisk, 1959).
Sea level rose through the Holocene, flooding the preexisting

Pleistocene stream and river valleys. Some of the valleys became
bays and estuaries along the modern Texas coast and were partly
filled with transgressive fluvial, deltaic, and/or estuarine deposits
as well as wind-blown sand from the barrier, and by washover
events during extreme storms (Hayes, 1967). When sea-level stabi-
lized (approximately 6–4 kya) sand shoals and offshore bars began
to merge between the drowned-river valleys (Fisk, 1959). In the late
Holocene, the shoals became a series of emergent, low discontinu-
ous sandy islands that aligned parallel with the mainland shoreline
(Brown et al., 1977). As the smaller protoislands accreted, they
merged to form a large, arcuate system of barrier islands and spits
extending approximately 600 km from modern-day Bolivar Penin-
sula to South Padre Island (Houser and Mathew, 2011). Strati-
graphic units inferred from seismic surveys and borehole data
suggest that the base of the barrier-lagoon system consists of Pleis-

Table 1. Theoretical skin depths δ in meters over the frequency bandwidth of the GSSI Profiler EMP-400 for a range of
apparent conductivities encountered across the coastal environment.

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500 3000

Frequency (kHz) 1 71.2 50.3 35.6 29.0 25.2 22.5 20.5 19.0 17.8 16.8 15.9 13.0 11.3 10.1 9.2

2 50.3 35.6 25.2 20.6 17.8 15.9 14.5 13.4 12.6 11.9 11.3 9.2 8.0 7.1 6.5

3 41.1 29.0 20.6 16.8 14.5 13.0 11.9 11.0 10.3 9.7 9.2 7.5 6.5 5.8 5.3

4 35.6 25.2 17.8 14.6 12.6 11.3 10.3 9.5 8.9 8.4 8.0 6.5 5.6 5.0 4.6

5 31.8 22.5 16.0 13.0 11.3 10.1 9.2 8.5 8.0 7.5 7.1 5.8 5.0 4.5 4.1

6 29.0 20.5 14.6 11.9 10.3 9.2 8.4 7.8 7.3 6.8 6.5 5.3 4.6 4.1 3.8

7 26.9 19.0 13.5 11.0 9.5 8.5 7.8 7.2 6.7 6.3 6.0 4.9 4.3 3.8 3.5

8 25.2 17.8 12.6 10.3 8.9 8.0 7.3 6.7 6.3 5.9 5.6 4.6 4.0 3.6 3.2

9 23.7 16.8 11.9 9.7 8.4 7.5 6.8 6.3 5.9 5.6 5.3 4.3 3.8 3.4 3.1

10 22.5 15.9 11.3 9.2 8.0 7.1 6.5 6.0 5.6 5.3 5.0 4.1 3.6 3.2 2.9

11 21.5 15.2 10.8 8.8 7.6 6.8 6.2 5.7 5.4 5.1 4.8 3.9 3.4 3.0 2.8

12 20.5 14.5 10.3 8.4 7.3 6.5 5.9 5.5 5.1 4.8 4.6 3.8 3.2 2.9 2.7

13 19.7 14.0 9.9 8.1 7.0 6.2 5.7 5.3 4.9 4.7 4.4 3.6 3.1 2.8 2.5

14 19.0 13.4 9.5 7.8 6.7 6.0 5.5 5.1 4.8 4.5 4.3 3.5 3.0 2.7 2.5

15 18.4 13.0 9.2 7.5 6.5 5.8 5.3 4.9 4.6 4.3 4.1 3.4 2.9 2.6 2.4

16 17.8 12.6 8.9 7.3 6.3 5.6 5.1 4.8 4.4 4.2 4.0 3.2 2.8 2.5 2.3

Note: The relative magnetic permeability (μ∕μ0) value of 1.0006 (typical of soil and sedimentary rock) used in this table follows that given in Nettleton (1940) and Scott (1983).
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tocene sand and mud overlain by shoreface sand and mud, wash-
over and aeolian deposits, and lagoonal muds (Brown et al., 1977).
The depth to the Pleistocene ravinement surface (known as the
Beaumont formation) has been suggested to vary considerably
along the length of the barrier island (Fisk, 1959). The sediment
thickness of modern shoreface sands is estimated to be approxi-
mately 2–3 m, whereas the thickness of the shoreface sands and
muds is approximately 10 m (see Brown et al. [1977], p. 56, Fig-
ure 15) or greater within the paleochannels (Fisk, 1959). Accord-
ingly, approximate σa values in this study range from >400 mS∕m
outside the channels to <200 mS∕mwithin the sand-filled channels,
which are likely more resistive.
Radiocarbon dates from shell samples suggest that the modern

barrier and its hypersaline lagoon (Laguna Madre) began to form
approximately 5 kya (Fisk, 1959), whereas Padre Island became
a continuous barrier at approximately 3.7 kya (Brown et al.,
1977). Laguna Madre became progressively isolated as Padre Island
continued to grow, causing increased salinity in the lagoon and
gradual development into a noncarbonate coastal sabkha (Amdurer
and Land, 1982). The modern wind-tidal flats of Laguna Madre are
anomalous compared with other coastal environments worldwide
(Morton and Holmes, 2009). High evaporation rates, low rainfall,
and isolation from tidal passes combine to produce a distinctive set
of hydrologic and geomorphic conditions along the south Texas
Coastal Zone. Wind is always an important factor in controlling
coastal processes; however, the combination of low rainfall and
high evaporation, prevailing southeasterly winds, and high temper-
atures in south Texas make aeolian processes even more important.
Within the wind-tidal flats, sedimentation is dominated by aeolian
and wind-tidal processes. Padre Island is microtidal, and the mean
and diurnal tidal levels within the study area are 0.38 and 0.45 m,
respectively (NOAA, 2015a). Slight differences in elevation on the
wind-tidal flats markedly affect the frequency with which any given
area is flooded, thus creating a complex of different sedimentary
facies within the wind-tidal environment (Miller, 1975).

METHODS

North Padre Island is the longest undeveloped barrier island in
the world and is an ideal location for testing EMI profiling tech-
niques. With the exception of a few buildings at the northern en-
trance of the National Seashore, there is no urban development
within PAIS. Thus, interference of EM signals by cultural noise
(e.g., communication towers, railways, pipelines, fences, etc.) is
minimal to nonexistent. For this study, all surveys were conducted
in the central region of the island approximately 65 km south of the
main park entrance. This area is accessible only by four-wheel-drive
vehicles, and it is one of the most remote sections of the island.
Locations of the EMI surveys were chosen based on geologic maps
by Fisk (1959) and Brown et al. (1977) to allow for comparisons
between σa measurements and previously interpreted geologic fea-
tures. A series of surveys using a GSSI Profiler EMP-400 were per-
formed along three shore-normal transects corresponding to the
southern survey (SS), central survey (CS), and northern survey
(NS) of the study area (Figure 2). A 37 km long alongshore survey
(AS) was collected through the NS and SS. Additionally, repeat sur-
veys over a period of approximately 1 year were taken within the
AS to monitor the sensitivity of the profiler to seasonal changes in
hydrologic conditions. Instrument calibration, measurement repeat-
ability, and tests for the effect of tides on the EMI signal were per-

formed at the intersection (tie point) of the NS and AS and are
described in detail in the following sections.

Calibration tests

Despite the growing interest in using EMI techniques for coastal
studies, the importance of performing instrument calibrations is
often overlooked. Along the beach factors such as storms, tides,
waves, currents, and precipitation regulate the position of the water
table (see Lanyon et al., 1982; Nielsen, 1990), in turn altering sub-
surface σ. As a result, σa measurements by an EMI sensor are sen-
sitive to fluctuations of the water table in response to these forcing
mechanisms (Weymer et al., 2015). The GSSI Profiler EMP-400
requires two calibrations prior to each survey (GSSI, 2007). The
first is a field calibration in which the operator stands a distance
of approximately 4 m away from the instrument, placing the sensor
on the ground to measure background noise/EM fields averaged
over approximately 5 s at each frequency. Second, the instrument
is calibrated with the operator holding it at a predetermined height
above the ground (e.g., 0.7 m in this study). These “factory” cal-
ibrations must be performed before starting the survey, after chang-
ing batteries, and/or operators. However, other environmental
factors and survey design unique to each study site should also

Figure 2. Location map of central PAIS and adjacent Laguna Ma-
dre wind-tidal flats in southern Texas, USA. EMI surveys are super-
imposed on satellite imagery. Shore-normal EMI transects are
labeled as NS, CS, and SS corresponding to the northern, central,
and southern surveys, respectively. The entire 37 km AS crosses
each of the shore-normal surveys. Repeat 2.5 km alongshore sur-
veys are located approximately 2 km south of the CS, highlighted
by the white box. Calibration and tidal experiments are positioned at
the intersection of the AS and NS.
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be accounted for when calibrating the instrument. In the following
section, we recommend several field calibrations that should be
implemented for coastal surveys in addition to the existing standard
GSSI calibration procedures.
Calibration tests were conducted on 30 March 2015 at various

locations across the beach and at the NS and AS tie point (Figure 3).
A diagram of the survey design is shown in Figure 3a. Based on
the above-mentioned factors, there are three important calibrations
necessary to determine measurement reliability. As will be demon-
strated later in the results, σa varies significantly across the beach.
Accordingly, the first calibration test examines how σa values change
if the instrument is calibrated at different subenvironments across the
beach (e.g., foreshore, backshore, and beach-dune interface). For this
test, the instrument was calibrated at 10 m intervals (e.g., C0, C10,
C20) starting at mean tide level (MTL ¼ C0) moving perpendicular
to the shoreline and ending at the base of the foredunes (C50). After
each calibration (h ¼ 0.7m), measurements were taken at a 1 m step
size along the same 50 m transect, parallel to the shoreline approx-

imately 25 m from MTL. The results of the survey are shown in Fig-
ure 3b. The highest σa values correspond to calibrations performed
closest to MTL and generally decrease with distance away from the
shoreline. However, σa values are slightly higher when the profiler
was calibrated closer to the beach-dune interface (i.e., C40, C50 m)
than at C20 and C30. The results suggest that the profiler consistently
measures the same trend in alongshore σa values, but there is a no-
ticeable difference up to 100 mS∕m between calibrations performed
within 10 m of the MTL and calibrations performed ≥ 20 m from the
MTL. To reduce the influence of high salinity and tides, it is sug-
gested that calibrations be made >25 m (or as far away as possible)
from the MTL and that each subsequent calibration should be per-
formed consistently the same distance away from the shoreline.
The second calibration test examines how measurements vary

when calibrations are made at different heights above the ground.
Prior to each survey, the operator can adjust the height of the instru-
ment usually ranging from 0.0 to 0.8 m, where 0.8 m is the maxi-
mum position the profiler can be carried comfortably. A series of

Figure 3. (a) Survey design for instrument calibration and tidal experiments at the intersection of the AS and NS. (b) Alongshore surveys
following each calibration point (e.g., C0 ¼ 0 m landward from the MTL, C10 ¼ 10 m from the MTL, etc.). The σa values are shown at 3 kHz
for each survey. (c) Box and whisker plot of instrument drift measured at 0.1 m increments above the ground. (d) Time series assessing
instrument drift 0.7 m above the ground for each frequency at the tie point shown in panel (a).
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10 measurements was recorded every 10 s at 0.1 m intervals to as-
sess signal drift at each height (Figure 3c). Tidal variation is
assumed to be negligible as each sequence of measurements
was acquired within minutes. The least amount of drift occurs when
the sensor is placed closest to the ground surface (0.0 m), while the
standard deviation increases with height between 0.1 and 0.6 m.
Readings at 0.7 m are also reasonably stable (�3 mS∕m); however,
stability decreases again at 0.8 m. For all surveys in this study, data
were acquired 0.7 m because there is minimal drift at this height,
and we wanted to avoid additional noise at the ground surface from
trash and debris that unfortunately is prevalent along the beach at
PAIS. It is suggested that for beach surveys, the instrument should
be carried at 0.7 m above the ground to avoid unwanted noise at the
surface and to maximize the efficiency of data acquisition, espe-
cially for long (>10 km) surveys.
The third calibration test examines signal drift over the battery

life cycle used to power the PDA. A continuous time series of
600 measurements was acquired at 10 s intervals
over a period of approximately 100 min at each
frequency (Figure 3d). Measurements were col-
lected at the tie point (Figure 3a) 0.7 m above the
ground to visualize signal drift at a stationary
point. The drift at 3, 10, and 15 kHz frequencies
varies between approximately 1 and 2 mS∕m,
which is at least an order of magnitude less than
the variation of measurements collected for each
survey in this study. Despite the small degree of
noise at 3 kHz, the readings are stable at all
frequencies and show no evidence of appreciable
instrument drift. As noted by Abdu et al. (2007),
error from signal drift is less significant in envi-
ronments where the S/N is high (e.g., coastal).
For coastal surveys covering a relatively small
area, Delefortrie et al. (2014a) propose a drift-
correction procedure using a calibration line that
crosses the entire survey area over a short amount
of time. Although useful, this procedure is not
practical for the 37 km long AS in this study be-
cause it takes approximately 4–5 h to acquire
10 km of data. Along the beach, groundwater con-
ditions can change over these timescales in re-
sponse to tidal forcing. Thus, it is argued that a
detailed account of tidal variation is more impor-
tant for large-scale alongshore surveys than apply-
ing a drift correction to the spatial EMI data series.
It is important to note that the calibrations de-
scribed above are intended for walking surveys.
Although beyond the scope of this study, addi-
tional calibrations and drift corrections may be
necessary if the instrument is being towed behind
a vehicle (see Delefortrie et al., 2014a).

Instrument orientation testing

Test surveys were conducted on 18 May 2013
starting at the seaward side of the NS to deter-
mine: (1) consistency of σa measurements using
different TX-RX boom orientations to check
whether there is underlying 1D structure and
(2) measurement reproducibility along the same

transect acquired on the same day. Two vertical dipole orientations
were tested: inline (P-mode) with TX and RX coils aligned in the
survey direction and broadside (T-mode) with TX and RX coils
aligned perpendicular to the survey direction. Differences between
P-mode and T-mode signatures can be attributed to variations in the
mutual electromagnetic coupling among the TX coil, the subsurface
structure, and the RX coil. In other words, mutual coupling is af-
fected by the relative geometry of the TX-RX configuration with
respect to subsurface structure (Everett, 2013). Furthermore, the
mutual coupling is the same for both modes if the subsurface is
1D. Both surveys were conducted at 0.5 m step size along the same
100 m long shore-normal transect, starting at the backbeach and
traversing the foredune ridge. Responses acquired in the different
modes at each frequency were nearly identical. However, a slight
mismatch between the two modes is visible between 50 and 70 m
along the survey line at 1 and 5 kHz frequencies, but it is not sig-
nificant at 15 kHz (Figure 4). There is a considerable amount of

Figure 4. Comparison of σa measurements taken with different profiler orientations: P-
mode and T-mode. Each survey at (a) 1, (b) 5, and (c) 15 kHz was conducted along the
same shore-normal transect starting from the backbeach (0 m) and moving west across
the foredune ridge (100 m). Step size for each survey was 0.5 m.
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noise at 1 kHz; therefore, 3 kHz was used as the lowest frequency
for the remainder of the study. The anomaly is more noticeable with
decreasing frequency, and it is more pronounced for the T-mode.
This effect could be caused by a discontinuity from a shallow fea-
ture along the profile and should be more detectable at the lowest
frequency because the EMI sensor has a larger sensitivity pattern
(i.e., larger illuminated volume) at low frequency. The 3D sensitiv-
ity pattern also has larger extent in the direction parallel to the coil-
coil line. Therefore, the 3D anomaly should be more pronounced on
data acquired with the T-mode configuration (see Pérez-Flores et al.,
2012; Guillemoteau and Tronicke, 2015). The small quantified dif-
ference over this limited area justifies collecting data in one orien-
tation, thus all subsequent surveys in this study were executed in
P-mode. The small 3D effects from these tests suggest that geoe-
lectrically the beach can be approximated as a 1D environment
along a single transect.

Repeatability tests

Measurement repeatability tests were performed at PAIS and off-
site at the Texas A&M University campus, College Station, Texas.

At PAIS, repeat measurements were recorded at
the intersection (i.e., tie points) of the CS and NS
with the AS survey. The values and relative dif-
ference of σa measurements between the tie
points (Table 2) show good agreement at each
recorded frequency. The relative difference in
σa values (dac) was calculated by

dac ¼
�
Ax − Ay

Ay

�
× 100; (3)

where Ax is the σa at the point where the two
surveys intersect in the alongshore or x-dimen-
sion and Ay is the σa at the point where the
two intersect in the shore-normal direction or
y-dimension. It is possible that the mismatch be-
tween values at each tie point can be attributed to
measurement error because the positional accu-
racy of the EMI sensor’s GPS is approximately
1 m. Nonetheless, the overall agreement of σa
values at each tie point provides further evidence
that same-day measurements by the EMI sensor
are reproducible.
In addition to testing the profiler in a coastal

environment, where the subsurface hydrology is
complex and dynamic, repeat surveys were per-
formed on campus at Texas A&MUniversity in a
loamy soil environment where the hydrology is
presumably less spatially and temporally varia-
ble. Two surveys were conducted on 11 Novem-
ber 2014 and 19 November 2014 along a 30 m
transect at a 1 m step size (Figure 5). The first
survey was performed during dry conditions,
whereas the second survey was taken a week
later a few days after a rain event. A buried object
(irrigation pipe) is visible between 12 and 15 m
along the transect and allows a detailed compari-
son between each set of survey data. The
approximate depth of the pipe is 2–3 m, and

Figure 5. Off-site repeatability tests performed on campus at Texas A&M University in
College Station, Texas. The same frequencies (i.e., 3, 10, and 15 kHz) were used at the
off-site location as what was measured for all subsequent surveys in the study site (ex-
cept Figure 4).

Table 2. Tie points and relative difference of measured σa
values between the alongshore and shore-normal surveys
collected in August 2013. The σa values in the upper rows
are the tie points between the start of the 10 km AS (0 km)
and the start of the central shore-normal survey (CS). The
σa values in the lower rows are the tie points between the
end of the 10 km AS (10 km) and the start of the northern
shore-normal survey (NS).

3 kHz 10 kHz 15 kHz

Alongshore (0 km) 677.657 573.961 519.914

Central (0 km) 676.731 573.363 520.865

Relative difference (%) 0.137 0.104 −0.183

Alongshore (10 km) 619.374 536.981 481.833

Northern (0 km) 600.619 517.821 473.218

Relative difference (%) 3.12 3.70 1.82
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the DOI is approximately 6.4–2.7 m for the range of σa values mea-
sured at 3, 10, and 15 kHz (see Table 1). The spatial coherence of
the signals at each frequency provides an indication of the quality
and the repeatability of the measurements. For a constant offset and
a given homogeneous half-space, the expected Im(Hs/Hp) response
decreases as the frequency decreases. In this case, the theoretical
response is too weak in comparison with the noise level from envi-
ronmental effects. However, the results suggest that the sensor is
capable of taking reliable measurements at higher frequencies
across different acquisition dates.

RESULTS

Tidal cycle experiments

Previous studies suggest that tidal motions play a substantial role
in the position and fluctuation of the water table in sandy beaches
(Lanyon et al., 1982; Nielsen, 1990). Rising and falling tides should
cause fluctuations in subsurface σ with respect to variations in the
exchange of freshwater and saltwater over the course of the tidal
cycle. It is reasonable to assume that this “tidal effect” influences
the EMI response depending on when a survey is performed (i.e.,
during low or high tide). What is not known is the manner in which
σa changes in response to tidal dynamics and
how far inland this effect persists. Here, we
present the results of three experiments investi-
gating the behavior of EMI data over a 12 h tidal
cycle alongshore and across the beach at the in-
tersection of the NS and AS (see Figure 3a).
The tests were conducted on 30 March 2015 at

08:00, approximately 75 min after low tide at the
tie point between NS and AS. Measurements
were recorded (h ¼ 0.7 m) every hour, for 12 h,
to monitor changes in σa (Figure 6). Tidal data
were downloaded from the NOAA Tsunami
Capable Tide Stations database (NOAA, 2015b).
The closest ocean-facing tide station is the Bob
Hall Pier, Corpus Christi, Texas (Station ID:
8775870) located approximately 70 km north-
northeast of the study site. At the tidal station,
water-level data were referenced to mean lower
low water (MLLW) and measurements were re-
corded at 1 min intervals. The difference in time
between the predicted tides at Bob Hall Pier and
the study site is negligible. The tidal data exhibit
a mixed semidiurnal pattern that is characteristic
of the region. The 12 h survey captured two low
tides of varying magnitude (approximately 06:42
and 20:02), and one high tide (approximately
14:39). Although the tidal signal exhibits a peri-
odic trend, the EMI signal follows a more step-
function-like pattern. At low tide, the σa values
(approximately 695 mS∕m) remain fairly con-
stant for 4 h and then suddenly jump to approx-
imately 830 mS∕m at 12:00, preceding high tide
by nearly 3 h. The σa values remain consistently
high up to 3 h after high tide and suddenly drop
to approximately 720 mS∕m at 19:00. The EMI
signal exhibits a lead/lag step response that in-
creases rapidly preceding the high tide then drops

off abruptly during falling tide. The σa values at the higher low tide
(20:00) are on average approximately 30 mS∕m higher than values
recorded at the lowest low tide (08:00).
The aforementioned effect can also be seen in two additional sur-

veys that were performed over a 50 m alongshore transect and 50 m
shore-normal transect (Figure 7). Both surveys were collected at
1 m step size at the same location as the repeatability tests, i.e.,
at the intersection of NS and AS (refer to Figure 3a). The objective
of these tests was to examine measurement repeatability along each
transect during different stages of the 12 h tidal cycle to better
understand the effect of changing hydrologic conditions on the
EMI signal. Each survey was repeated every hour for 12 h, starting
at 08:00 and ending the same day at 20:00. The alongshore and
shore-normal surveys were acquired in approximately 5 min, re-
spectively. Two low tides and one high tide were captured during
the surveys and the difference in water levels between the tides was
approximately 0.3 m. Similar to the results shown in Figure 6, the
alongshore and shore-normal surveys suggest that there is a tide-
dependent step response in σa. For example, σa values measured
at high and low tides are clustered together, delineated by the solid
and dotted lines in the figure, respectively. With respect to the shore-
normal surveys, the separation between high and low tide responses
becomes smaller with distance inland. However, a difference of up

Figure 6. (a) Tidal cycle and step-function 3 kHz EMI response over a 12 h sampling
interval at the tie-point between the AS and NS. Water level records are recorded at
1 min intervals. (b) 48 h tidal cycle data prior to, during, and after the 12 h EMI survey.
Note: All water-level data are referenced to MLLW.
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to approximately 50 mS∕m occurs at the base of the foredune ridge.
The highlighted area in Figure 7a delineates the zone in which each
AS was performed, where the difference in σa values is approxi-
mately 80 mS∕m between high and low tides. Although σa values
varied over the course of the tidal cycle, the overall trend in the data
for each survey is consistent.

Shore-normal EMI surveys

Shore-normal EMI surveys were performed across the barrier/
wind-tidal flats in August 2013 (refer to 2). Each transect was col-
lected at a 10 m step size at 3, 10, and 15 kHz frequencies (Figure 8).
The length of each transect for the NS, CS, and SS is 1.9, 3.2, and
4.6 km, respectively. For each profile, the highest σa values corre-
spond to the lowest elevations (i.e., beach, salt marsh, and wind-
tidal flats). Conversely, the highest elevations correspond to the
lowest σa values (i.e., dunes and back-barrier dunes). Here, we
adopt terminology used by Paine et al. (2004) for classifying differ-
ent coastal subenvironments across the barrier island system. Dis-
tinct subenvironments are labeled for each survey in Figure 8 and
are defined in the figure caption. The width of the island generally
increases from north to south and the variety of coastal habitats also
increases with island width. As a result, variations in the EMI signal
related to changes in geomorphic environments become more pro-
nounced from the NS to SS. For all surveys, σa measurements in-
crease with decreasing frequency.
In addition to σa measurements, topographic information was ex-

tracted from aerial LiDAR data sets for comparison with the EMI
data. The aerial LiDAR survey was performed in 2009 by the U.S.
Army Corps of Engineers (USACE) and Joint Airborne LiDAR
Bathymetry Technical Center of Expertise (JALBTCX) as part of
the West Texas Aerial Survey project to assess posthurricane con-
ditions of the beaches, barrier islands, and lakeshores along the
Texas coast. The 2009 LiDAR data set is the most recent one pub-
licly available that provides the greatest coverage of the island.
Although there is a four-year interval between the LiDAR and
EMI surveys, Padre Island has not been directly impacted by a hur-
ricane since 2008, when Hurricane Dolly struck south Padre Island
as a Category 1 storm (NOAA, 2015a). As a result, Padre Island
currently is more stable than other islands along the Texas coast
(i.e., Galveston, Matagorda, and Bolivar Peninsula) which have
been recently impacted by Hurricanes Rita and Ike (NOAA,
2015a). The 1 m resolution LiDAR-derived digital elevation model
(DEM) used in this study was generated using an ordinary kriging
algorithm at Texas A&M University. The entire study area was
processed by dividing the entire point cloud into tiles approximately
8 × 8 km. There was no single semivariogram used in processing
the LiDAR point cloud tiles because the exact semivariogram
parameters are tile dependent. The DEM was broken into tiles to
facilitate processing, and, because the morphology of each tile is
different, the semivariogram parameters will vary slightly between
tiles. The processed DEM tiles were subsequently merged to pro-
duce the final DEM covering the entire study area.

Alongshore EMI surveys

Alongshore surveys (Figures 9 and 10) were performed between
November 2013 and March 2015 to investigate the profiler’s ability
to detect variations in framework geology and the location of pre-
viously inferred paleovalleys/paleochannels (see Fisk, 1959; Brown

et al., 1977). These paleochannels lie between the CS and NS of this
study. The alongshore surveys are located within a 10 km section of
the beach and intersect the CS and NS transects (see Figure 2). Each
survey was performed in the backbeach environment, approxi-
mately 25–35 m inland from the MTL (as indicated by wrack-line
deposits), where the beach is drier and presumably less affected by
the dynamic hydrology. Similarly to the shore-normal surveys, each
transect was collected at a 10 m step size at 3, 10, and 15 kHz
frequencies. For comparison, the previously identified paleochan-
nels were digitized from Fisk (1959) using ArcGIS software and
superimposed on satellite imagery (Figure 9). There is a high degree
of variability in σa along the 10 km long transect with values rang-
ing from approximately 50 to 800 mS∕m. Average alongshore σa
values are approximately 400 mS∕m, consistent with seawater-
saturated beach sand. However, σa values decrease in certain places
to <200 mS∕m, indicating a change in lithology and/or ground-
water conditions. The decrease in σa occurs roughly within the
same areas where Fisk (1959) infers the location of Pleistocene pa-
leovalleys/-channels from seismic and core data.
A comparison of three repeat surveys taken within a smaller

2.5 km segment of the AS (see Figure 9) shows the seasonal effects
on the EMI signal over a period of approximately 1 year between
November 2013 and October 2014. All of the surveys are located

Figure 7. (a) Shore-normal and (b) alongshore 3 kHz repeat surveys
measured over the course of a 12 h tidal cycle. The profiler was
oriented in P-mode for each survey and was calibrated at the same
tie-point location (see Figure 3a) prior to each hourly survey. The
dotted lines in both surveys correspond to measurements taken dur-
ing low tide, whereas solid lines represent measurements made dur-
ing high tide. The darkest lines represent the onset of high and low
tides and gradually decrease in intensity with time.
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within the boundaries of the interpreted paleochannel region. The
3 kHz σa values in each panel are displayed using GPS positions
recorded by the sensor. The tidal state during each survey was ap-
proximately at low tide and is assumed to be less significant than the

seasonal variation within the signal (Table 3). Figure 10 illustrates
how σa varies between seasons (i.e., during wet and dry conditions).
The σa values are highest in November 2013, a few days after a
rainy period and elevated storm surge, resulting in a signal consis-

Figure 8. Shore-normal surveys and classification
of each subenvironment for the (a) northern,
(b) central, and (c) southern surveys collected
from 7 to 9 August 2013, respectively. Abbrevi-
ated labels for each environment are as follows:
B, beach; D, dunes; VBF, vegetated-barrier flats;
BID, back-island dunes; WTFL, wind-tidal flats;
and SM, salt marsh. For each survey, the light
gray, dark gray, and black lines correspond to
σa values measured at 3, 10, and 15 kHz, respec-
tively. The step size for each survey was 10 m.
Topography data (dotted lines) were extracted
from an open access data set provided by the
USACE and JALBTCX as part of the 2009 West
Texas Aerial Survey project. The original LiDAR
data can be accessed through the NOAA Digital
Coast Data Access Viewer (NOAA, 2013). Topo-
graphic elevation was extracted from the LiDAR-
derived DEM every 25 m along the northern, cen-
tral, and southern transect. The horizontal and ver-
tical positional accuracy of the LiDAR is 0.15 and
0.5 m, respectively.

Figure 9. Alongshore EMI comparison with pre-
viously interpreted paleochannels by Fisk (1959)
and the approximate tidal states during data ac-
quisition. The EMI survey was collected on 11
October 2014. Distance in kilometers on the x-axis
of the EMI survey. The gray shaded regions high-
light the intersections of the paleochannels corre-
sponding (on average) to low σa values. Depth
contours were manually digitized using ArcGIS.
Inferred Pleistocene streams are indicated by black
dotted lines, and the EMI surveys are represented
by the white dotted lines. The repeat alongshore
surveys (Figure 10) are denoted by the red dotted
lines.
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tent with homogeneous saturated substratum. Conversely, the low-
est σa values correspond to the October 2014 survey when the beach
was considerably drier. Here, the σa signal shows more hetero-
geneity that is hypothesized to reflect the framework geology of the
island. In general, the results suggest that the sensor probes deeper
and is able to detect variations in geologic structure when the beach
is drier.

DISCUSSION

Groundwater dynamics within sandy beaches and barrier islands
have been studied in detail (Nielsen, 1990, 1999; Nielsen and Kang,
1995; Horn, 2002; Stevens et al., 2009) and have important impli-
cations for EMI investigations. Understanding the interaction be-
tween surface and groundwater flows is not only important
quantifying beach profile evolution (Horn, 2002) but also has been
shown in this study to influence σa measurements, complicating
framework geology interpretations. Nielsen (1999) suggests that
the watertable under coastal barriers will be highest on the seaward
side of the island because of wave action and tides. Nonlinear ef-
fects within the beach combined with wave and tidal forcing creates
a landward-increasing superelevation of the mean water table level,
resulting in a net landward flow of subsurface groundwater and
thinning of the freshwater lens in the backbarrier (Nielsen and
Kang, 1995). It follows that fluctuations in the watertable along-
shore and across the island should to some extent regulate EMI sig-
nals, however, this effect is suggested to be more pronounced for
alongshore surveys in this study. Therefore, we choose to focus on
the results of the alongshore surveys in the following discussion as

the results of the shore-normal surveys are similar to findings by
Paine et al. (2004) and have previously been discussed in depth.
Results from the tidal experiments (see Figures 6 and 7) suggest

that there is a tide-dependent step response in σa over a 12 h tidal
cycle. This phenomenon has also been observed by Nielsen (and
others) in several studies along the eastern coast of Australia. Using
11 stilling wells to monitor the movement of the water table at Bar-
renjoey Beach, north of Sydney, Australia, Nielsen (1990) observes
three characteristics at one of the wells landward of the high water
mark: (1) the minimum water level was substantially higher than the
low tide level, (2) the variation of the water table was not sinusoidal,
despite the near-sinusoidal (semidiurnal) nature of the tides, and
(3) the maximum water level was a few centimeters higher than
the high-tide level. Nielsen (1990) suggests that the resulting re-
sponse of the water table level is a function of three mechanisms:
formation of a seepage face around low tide, asymmetry of the
boundary condition at the sloping beach face, and the nonlinearity
of the governing equations (Darcy’s law, continuity equation, and
Boussinesq’s equation). In other words, the beach slope acts as a
nonlinear filter such that water enters the porous medium across
the beachface more easily than it leaves because the infiltration at
high tide is more efficient than draining at low tide (Nielsen and
Kang, 1995). This effect is also observed in this study and may
explain the similar lead/lag steplike response in σa during the tidal
cycle.
The fluctuation of the water table with respect to storms, waves,

and tides is a significant problem to consider when performing EMI
surveys in the coastal environment, especially for alongshore sur-
veys. For large-scale transects, σa measurements may vary at differ-

ent locations across the beach and depend on the
state of the tidal cycle when the surveys were per-
formed. It is argued that a detailed account of ti-
dal dynamics (e.g., low, rising, high, falling) is
required for comparison with each EMI survey
for data processing and reliable geologic inter-
pretation (see Figure 9). Combining the tidal
experiments demonstrated in this study with a
detailed account of tidal states provides an
avenue forward in separating the complex
groundwater versus geologic signals embedded
in the EMI spatial data series. There are free,
publicly available online resources for down-
loading accurate tidal information such as the
NOAA Tides and Currents database (NOAA,
2015b). For example, the tidal variability for
each survey during the study is given in Table 3,
showing the time of the survey with respect to the
tidal cycle. By knowing the difference in σa be-
tween high and low tides, the location across the
beach in which the survey was performed, and
the tidal state during the time of the survey, it
is suggested that σa values can be adjusted to
low-tide values to remove the tidal effect. This
effect is lowest closest to the dune line, however,
at PAIS there is a considerable amount of topo-
graphic variation fronting the dunes that may al-
ter the EMI signal and reduce the efficiency of
data acquisition. Therefore, the optimal zone for
alongshore profiling is approximately 25–35 m

Figure 10. Comparison of 3 kHz repeat alongshore surveys within the AS collected on
28 November 2013, 2 February 2014, and 11 October 2014. Apparent conductivity val-
ues for each survey are superimposed on satellite imagery from National Agricultural
Imagery Program 2012. Note: Each image has the same scale, and σa is displayed using
the same range in values (0–800 mS∕m).
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(Figure 7a), where the difference in σa between high and low tide
is roughly the same as at the base of the dunes and there is insig-
nificant topographic variability. Figure 7 shows that for the along-
shore and shore-normal repeat surveys, the overall trend in the
EMI signal is the same over the 12 h tidal cycle. This suggests
that signal processing techniques (e.g., transform functions) and
time-series analysis can be used to model the variability of the
EMI signal with respect to tidal forcing. This concept will be ex-
plored in future studies and has potentially important implications
for understanding the complex interactions of groundwater with
framework geology.
Results from repeat alongshore EMI surveys demonstrate that σa

varies considerably when measured during different seasons.
Alongshore surveys during wet versus dry conditions show notice-
ably different σa values, but they may also be masked by tidal
effects and/or changing beach states following stormy or calm peri-
ods. The wet profile shows more evidence of fine-scale geologic
heterogeneity, whereas the dry profile shows a larger range between
maximum and minimum σa values. During wet conditions, σa read-
ings are consistently uniform and higher than during dry conditions,

limiting the DOI and the sensor’s ability to detect changes in lith-
ology. Conversely, during dry conditions the profiler can probe
deeper into the resistive surface and is able to better detect lateral
variations in the underlying geologic structure. This is because
lithologic σ contrasts are greater if the lithology is not water satu-
rated. The effect of changing groundwater conditions on EMI sig-
nals is suggested to be more dominant at smaller spatial scales
(≪10 km), but it is not as important when looking at large-scale
(>10 km) framework geology (see Weymer et al., 2015). As men-
tioned previously, small-scale fluctuations of the EMI signal along a
profile that result from dynamic hydrology can be statistically cor-
rected. It is argued that geologic interpretations can be made for
large-scale barrier island investigations by removing small-scale
nonlinearities from tidal effects.

CONCLUSIONS

The results of this study suggest that portable multifrequency
EMI profilers should be used with caution for framework geology
investigations in highly conductive barrier islands. Changing hydro-

Table 3. Daily tidal variations during each EMI survey. Survey times are listed relative to the high and low tides. Data were
recorded by NOAA at the Padre Island (south end) tide station #4471 (26°04.1’N, 97°09.4’W).

Date (time of survey) Time h m Tide

Height

Survey directionft cm

18 May 2013 (approximately 10:00–11:00) 1:34 Low 0.5 15 NS test survey (Figure 4)
9:53 Hi 1.4 43

17:21 Low 0.8 24

20:51 Hi 0.9 27

7 August 2013 (approximately 15:00–20:00) 5:05 Hi 1.3 40 NS (Figure 8)
9:53 Low 1.1 34

12:50 Hi 1.2 37

21:10 Low 0.1 03

8 August 2013 (approximately 11:00–15:00) 5:07 Hi 1.2 37 SS (Figure 8)
10:09 Low 1.0 30

14:04 Hi 1.1 34

21:42 Low 0.2 06

9 August 2013 (approximately 10:00–16:00) 5:08 Hi 1.2 37 CS (Figure 8)
10:34 Low 0.8 24

15:21 Hi 1.1 34

22:18 Low 0.3 09

29 November 2013 (approximately 09:00–10:00) 5:41 Low 0.3 09 Repeat AS (Figure 10)
14:13 Hi 1.6 49

2 February 2014 (approximately 10:00–12:00) 3:40 Hi 1.0 30 Repeat AS (Figure 10)
10:53 Low −0.2 −06
17:32 Hi 0.9 27

23:31 Low 0.3 09

11 October 2014 (approximately 08:00–20:00) 11:14 Low 0.1 03 AS (Figures 9 and 10)
20:11 Hi 2.1 64

30 March 2015 (approximately 8:00–20:00) 6:42 Low 0.3 09 Tidal and calibration experiments
(Figures 3, 6, and 7)14:39 Hi 1.3 40

20:02 Low 1.0 30

Note: Reported times and heights correspond to high and low waters. Historical tidal data were downloaded from NOAA’s Tides and Currents database (NOAA, 2015b).
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logic conditions over different spatiotemporal scales influence EMI
signals alongshore and across the island, however, are suggested to
be more significant for alongshore profiling. It is suggested that
measurements should be acquired 0.7 m above the ground and that
alongshore surveys be performed approximately 25–35 m inland
from the MTL to maximize data acquisition time and to reduce
the influence of changing tides. We recommend combining the in-
strument calibration and tidal protocol used in this study with de-
tailed tidal records to separate the effects of hydrology and geology
on the σa signal.
Repeat alongshore surveys during different seasons show differ-

ent σa values, but may also be masked by tidal effects and/or chang-
ing beach states. During wet conditions, subsurface σ is relatively
uniform, limiting the DOI and the ability of the EMI sensor to detect
subsurface variations in lithology. Conversely, during dry condi-
tions the profiler probes deeper and is better able to detect variations
in the underlying geologic framework. The effect of changing
groundwater dynamics on EMI signals is suggested to be more sig-
nificant at smaller spatial scales (≪10 km), but is not as important
when looking at large-scale (>10 km) framework geology. In other
words, σa measurements are best viewed in a relative sense for map-
ping the framework geology of a particular coastline. Future studies
investigating the rich statistical information contained within the
EMI spatial data series will provide further insight into understand-
ing the variation within the signal and interpreting the complex
coastal processes that causes it. We propose that multiple EMI sur-
veys are required along the same transect to account for the con-
founding effects of changing hydrologic conditions on EMI
responses. For framework geology investigations, EMI surveys
should be performed in the backbeach environment during dry con-
ditions when the water table is lower.

ACKNOWLEDGMENTS

We acknowledge A. Chamorro, C. Chamorro, A. Evans, A. V.
Plantinga, S. Trimble, B. Hammond, and T. de Smet for assisting
with data collection in the field. This project would not have been
possible without continued interest and support from J. Lindsay, T.
Clapp, and W. Stablein of the Science and Resources Management
division of PAIS, Texas. We thank the associate editors and re-
viewers for their constructive comments that considerably improved
this manuscript. This study was conducted under the National Park
Service Permit: # PAIS-2013-SCI-0005 and was funded in part by
grants-in-aid of Graduate Student Research Award by the Texas Sea
Grant College Program.

REFERENCES

Abdu, H., D. A. Robinson, and S. B. Jones, 2007, Comparing bulk soil elec-
trical conductivity determination using the DUALEM-1S and EM38-DD
electromagnetic induction instruments: Soil Sciences Society of America,
71, 189–196, doi: 10.2136/sssaj2005.0394.

Amdurer, M., and L. S. Land, 1982, Geochemistry, hydrology, and miner-
alogy of the Sand Bulge area, Laguna Madre flats, south Texas: Journal of
Sedimentary Research, 52, 703–716, doi: 10.1306/212F8035-2B24-11D7-
8648000102C1865D.

Benavides, A., M. E. Everett, and C. Pierce Jr., 2009, Unexploded ordinance
discrimination using time-domain electromagnetic induction and self-
organizing maps: Stochastic Environmental Research and Risk Assess-
ment, 23, 169–179, doi: 10.1007/s00477-007-0211-5.

Brown, L. F., Jr., J. H. McGowen, T. J. Evans, C.G. Groat, and W. L. Fisher,
1977, Environmental geologic atlas of the Texas coastal zone: Kingsville
area: Bureau of Economic Geology, University of Texas at Austin.

Christensen, N. B., and M. Halkjær, 2010, Mapping pollution and coastal
hydrogeology with helicopterborne transient electromagnetic measure-
ments: Exploration Geophysics, 45, 243–254, doi: 10.1071/EG13071.

Delefortrie, S., P. De Smedt, T. Saey, E. Van De Vijver, and M. Van Meirv-
enne, 2014a, An efficient calibration procedure for correction of drift in
EMI survey data: Journal of Applied Geophysics, 110, 115–125, doi: 10
.1016/j.jappgeo.2014.09.004.

Delefortrie, S., T. Saey, E. Van De Vijver, P. De Smedt, T. Missiaen, I. De-
merre, and M. VanMeirvenne, 2014b, Frequency domain electromagnetic
induction survey in the intertidal zone: Limitations of low-induction-num-
ber and depth of exploration: Journal of Applied Geophysics, 100, 14–22,
doi: 10.1016/j.jappgeo.2013.10.005.

de Smet, T. S., M. E. Everett, C. J. Pierce, D. L. Pertermann, and D. B.
Dickson, 2012, Electromagnetic induction in subsurface metal targets:
cluster analysis using local point pattern spatial statistics: Geophysics,
77, no. 4, WB161–WB169, doi: 10.1190/geo2011-0391.1.

Everett, M. E., and C. J. Weiss, 2002, Geological noise in near‐surface
electromagnetic induction data: Geophysical Research Letters, 29,
2001GL014049, doi: 10.1029/2001GL014049.

Everett, M. E., and C. Farquharson, 2012, Near-surface electromagnetic in-
duction — Introduction: Geophysics, 77, no. 4, WB1–WB2, doi: 10
.1190/geo-2012-0601-SPSEIN.1.

Everett, M. E., 2013, Near-surface applied geophysics: Cambridge Univer-
sity Press.

Fisk, H. N., 1959, Padre Island and LagunaMadre Flats, coastal south Texas:
Proceedings of the 2nd Coastal Geography Conference, Louisiana State
University, 103–151.

Fitterman, D. V., and M. Deszcz-Pan, 1998, Helicopter EM mapping of salt-
water intrusion in Everglades National Park, Florida: Exploration Geo-
physics, 29, 240–243, doi: 10.1071/EG998240.

Frischknecht, F. C., V. F. Labson, B. R. Spies, and W. L. Anderson, 1991,
Profiling methods using small sources, in M. N. Nabighian, ed., Electro-
magnetic methods in applied geophysics Vol. 2, Applications: SEG, In-
vestigations in geophysics, 105–270.

Geophysical Survey Systems Incorporated, 2007, Profiler EMP-400 user’s
manual: Geophysical Survey Systems Incorporated.

George, R., and P. Woodgate, 2002, Critical factors affecting the adoption of
airborne geophysics for management of dryland salinity: Exploration
Geophysics, 33, 84–89, doi: 10.1071/EG02084.

Goldman, M., D. Gilad, A. Ronen, and A. Melloul, 1991, Mapping of sea-
water intrusion into the coastal aquifer of Israel by the time domain
electromagnetic method: Geoexploration, 28, 153–174, doi: 10.1016/
0016-7142(91)90046-F.

Guillemoteau, J., P. C. Sailhac, J. Boulanger, and J. Trules, 2015, Inversion
of ground constant offset loop-loop electromagnetic data for a large range
of induction numbers: Geophysics, 80, no. 1, E11–E21, doi: 10.1190/
geo2014-0005.1.

Guillemoteau, J., and J. Tronicke, 2015, Non-standard electromagnetic in-
duction sensor configurations: Evaluating sensitivities and applicability:
Journal of Applied Geophysics, 118, 15–23, doi: 10.1016/j.jappgeo.2015
.04.008.

Gradstein, F. M., J. G. Ogg, and M. van Kranendonk, 2008, On the geologic
time scale 2008: Newsletters on Stratigraphy, 43, 5–13, doi: 10.1127/
0078-0421/2008/0043-0005.

Hayes, M. O., 1967, Hurricanes as geological agents: Case studies of Hur-
ricanes Carla, 1961, and Cindy, 1963: The University of Texas, Bureau of
Economic Geology, Report of Investigation 61.

Horn, D. P., 2002, Beach groundwater dynamics: Geomorphology, 48, 121–
146, doi: 10.1016/S0169-555X(02)00178-2.

Houser, C., and S. Mathew, 2011, Alongshore variation in foredune height in
response to transport potential and sediment supply: South Padre Island,
Texas: Geomorphology, 125, 62–72, doi: 10.1016/j.geomorph.2010.07
.028.

Huang, H., 2005, Depth of investigation for small broadband electromagnetic
sensors: Geophysics, 70, no. 6, G135–G142, doi: 10.1190/1.2122412.

Huang, H., M. Deszcz-Pan, and B. Smith, 2008, Limitations of small EM
sensors in resistive terrain: Proceedings of the 21st EEGS Symposium on
the Application of Geophysics to Engineering and Environmental Prob-
lems, 21, 163–180.

Huang, H., and I. J. Won, 2000, Conductivity and susceptibility mapping
using broadband electromagnetic sensors: Journal of Environmental
and Engineering Geophysics, 5, 31–41, doi: 10.4133/JEEG5.4.31.

Kocurek, G., M. Townsley, E. Yeh, K. G. Havholm, and M. L. Sweet,
1992, Dune and dune-field development on Padre Island, Texas, with
implications for interdune deposition and water-table-controlled accumu-
lation: Journal of Sedimentary Research, 62, 622–635, doi: 10.1306/
D4267974-2B26-11D7-8648000102C1865D.

Lanyon, J. A., I. G. Eliot, and D. J. Clarke, 1982, Groundwater-level variation
during semidiurnal spring tidal cycles on a sandy beach: Australian Journal
of Freshwater Resources, 33, 377–400, doi: 10.1071/MF9820377.

McNeill, J., 1980, Electromagnetic terrain conductivity measurement at low
induction numbers: Geonics Limited.

E360 Weymer et al.

http://dx.doi.org/10.2136/sssaj2005.0394
http://dx.doi.org/10.2136/sssaj2005.0394
http://dx.doi.org/10.2136/sssaj2005.0394
http://dx.doi.org/10.1306/212F8035-2B24-11D7-8648000102C1865D
http://dx.doi.org/10.1306/212F8035-2B24-11D7-8648000102C1865D
http://dx.doi.org/10.1306/212F8035-2B24-11D7-8648000102C1865D
http://dx.doi.org/10.1007/s00477-007-0211-5
http://dx.doi.org/10.1007/s00477-007-0211-5
http://dx.doi.org/10.1071/EG13071
http://dx.doi.org/10.1071/EG13071
http://dx.doi.org/10.1016/j.jappgeo.2014.09.004
http://dx.doi.org/10.1016/j.jappgeo.2014.09.004
http://dx.doi.org/10.1016/j.jappgeo.2014.09.004
http://dx.doi.org/10.1016/j.jappgeo.2014.09.004
http://dx.doi.org/10.1016/j.jappgeo.2014.09.004
http://dx.doi.org/10.1016/j.jappgeo.2014.09.004
http://dx.doi.org/10.1016/j.jappgeo.2013.10.005
http://dx.doi.org/10.1016/j.jappgeo.2013.10.005
http://dx.doi.org/10.1016/j.jappgeo.2013.10.005
http://dx.doi.org/10.1016/j.jappgeo.2013.10.005
http://dx.doi.org/10.1016/j.jappgeo.2013.10.005
http://dx.doi.org/10.1016/j.jappgeo.2013.10.005
http://dx.doi.org/10.1190/geo2011-0391.1
http://dx.doi.org/10.1190/geo2011-0391.1
http://dx.doi.org/10.1190/geo2011-0391.1
http://dx.doi.org/10.1029/2001GL014049
http://dx.doi.org/10.1029/2001GL014049
http://dx.doi.org/10.1190/geo-2012-0601-SPSEIN.1
http://dx.doi.org/10.1190/geo-2012-0601-SPSEIN.1
http://dx.doi.org/10.1190/geo-2012-0601-SPSEIN.1
http://dx.doi.org/10.1071/EG998240
http://dx.doi.org/10.1071/EG998240
http://dx.doi.org/10.1071/EG02084
http://dx.doi.org/10.1071/EG02084
http://dx.doi.org/10.1016/0016-7142(91)90046-F
http://dx.doi.org/10.1016/0016-7142(91)90046-F
http://dx.doi.org/10.1016/0016-7142(91)90046-F
http://dx.doi.org/10.1190/geo2014-0005.1
http://dx.doi.org/10.1190/geo2014-0005.1
http://dx.doi.org/10.1190/geo2014-0005.1
http://dx.doi.org/10.1190/geo2014-0005.1
http://dx.doi.org/10.1016/j.jappgeo.2015.04.008
http://dx.doi.org/10.1016/j.jappgeo.2015.04.008
http://dx.doi.org/10.1016/j.jappgeo.2015.04.008
http://dx.doi.org/10.1016/j.jappgeo.2015.04.008
http://dx.doi.org/10.1016/j.jappgeo.2015.04.008
http://dx.doi.org/10.1016/j.jappgeo.2015.04.008
http://dx.doi.org/10.1127/0078-0421/2008/0043-0005
http://dx.doi.org/10.1127/0078-0421/2008/0043-0005
http://dx.doi.org/10.1127/0078-0421/2008/0043-0005
http://dx.doi.org/10.1016/S0169-555X(02)00178-2
http://dx.doi.org/10.1016/S0169-555X(02)00178-2
http://dx.doi.org/10.1016/j.geomorph.2010.07.028
http://dx.doi.org/10.1016/j.geomorph.2010.07.028
http://dx.doi.org/10.1016/j.geomorph.2010.07.028
http://dx.doi.org/10.1016/j.geomorph.2010.07.028
http://dx.doi.org/10.1016/j.geomorph.2010.07.028
http://dx.doi.org/10.1016/j.geomorph.2010.07.028
http://dx.doi.org/10.1190/1.2122412
http://dx.doi.org/10.1190/1.2122412
http://dx.doi.org/10.1190/1.2122412
http://dx.doi.org/10.4133/JEEG5.4.31
http://dx.doi.org/10.4133/JEEG5.4.31
http://dx.doi.org/10.4133/JEEG5.4.31
http://dx.doi.org/10.4133/JEEG5.4.31
http://dx.doi.org/10.1306/D4267974-2B26-11D7-8648000102C1865D
http://dx.doi.org/10.1306/D4267974-2B26-11D7-8648000102C1865D
http://dx.doi.org/10.1306/D4267974-2B26-11D7-8648000102C1865D
http://dx.doi.org/10.1071/MF9820377
http://dx.doi.org/10.1071/MF9820377


Miller, J. A., 1975, Facies characteristics of Laguna Madre wind-tidal flats,
in R. N. Ginsburg, ed., Tidal deposits: Springer, 67–72.

Morton, R. A., and J. H. McGowen, 1980, Modern depositional environ-
ments of the Texas coast: Bureau of Economic Geology, University of
Texas at Austin, Guidebook 20.

Morton, R. A., G. H. Ward, and W. A. White, 2000, Rates of sediment sup-
ply and sea-level rise in a large coastal lagoon: Marine Geology, 167,
261–284, doi: 10.1016/S0025-3227(00)00030-X.

Morton, R. A., and C. W. Holmes, 2009, Geological processes and sedimen-
tation rates of wind-tidal flats, Laguna Madre, Texas: Gulf Coast Asso-
ciation of Geological Societies Transactions, 59, 519–538.

Nabighian, M. N., and J. C. Macnae, 1991, Time domain electromagnetic
prospecting methods, in M. N. Nabighian, ed., Electromagnetic methods
in applied geophysics Vol. 2, Applications: SEG, Investigations in geo-
physics, 427–509.

Nenna, V., D. Herckenrath, R. Knight, N. Odlum, and D. McPhee, 2013,
Application and evaluation of electromagnetic methods for imaging salt-
water intrusion in coastal aquifers: Seaside Groundwater Basin, Califor-
nia: Geophysics, 78, no. 2, B77–B88, doi: 10.1190/geo2012-0004.1.

Nettleton, L. L., 1940, Geophysical prospecting for oil: McGraw Hill Inc.,
444.

Nielsen, P., 1990, Tidal dynamics of the water table in beaches: Water Re-
sources Research, 26, 2127–2134, doi: 10.1029/WR026i009p02127.

Nielsen, P., 1999, Groundwater dynamics and salinity in coastal barriers:
Journal of Coastal Research, 15, 732–740.

Nielsen, P., and H. Y. Kang, 1995, Ground water dynamics in beaches and
coastal barriers, inW. R. Dally, and R. B. Zeidler, eds., Coastal dynamics
‘95: American Society of Civil Engineers, 521–532.

NOAA, 2013, Digital coast data access viewer, http://coast.noaa.gov/
digitalcoast/data/coastallidar, accessed 01 December 2013.

NOAA, 2015a, National Hurricane Center, http://www.nhc.noaa.gov/data/,
accessed 29 April 2015.

NOAA, 2015b, Tides and currents, http://tidesandcurrents.noaa.gov, ac-
cessed 18 October 2015.

Paine, J. G., W. A. White, R. C. Smyth, J. R. Andrews, and J. C. Gibeaut,
2004, Mapping coastal environments with lidar and EM on Mustang
Island, Texas, US: The Leading Edge, 23, 894–898, doi: 10.1190/1
.1803501.

Pérez-Flores, M. A., R. G. Antonio-Carpio, E. Gómez-Treviño, I. Ferguson,
and S. Méndez-Delgado, 2012, Imaging of 3D electromagnetic data at
low-induction numbers: Geophysics, 77, no. 4, WB47–WB57, doi: 10
.1190/geo2011-0368.1.

Pincus, J. A., T. S. de Smet, Y. Tepper, and M. J. Adams, 2013, Ground‐
penetrating radar and electromagnetic archaeogeophysical investigations

at the Roman Legionary Camp at Legio, Israel: Archaeological Prospec-
tion, 20, 175–188, doi: 10.1002/arp.1455.

Santos, F. A., J. Triantafilis, K. E. Bruzgulis, and J. A. Roe, 2010, Inversion
of multiconfiguration electromagnetic (DUALEM-421) profiling data us-
ing a one-dimensional laterally constrained algorithm: Vadose Zone Jour-
nal, 9, 117–125, doi: 10.2136/vzj2009.0088.

Sasaki, Y., and M. A. Meju, 2006, A multidimensional horizontal-loop con-
trolled-source electromagnetic inversion method and its use to characterize
heterogeneity in aquiferous fractured crystalline rocks: Geophysical Journal
International, 166, 59–66, doi: 10.1111/j.1365-246X.2006.02957.x.

Scott, J. H., 1983, Electrical and magnetic properties of rock and soil: U.S.
Geological Survey, Report (No. 83-915).

Seijmonsbergen, A. C., D. T. Biewinga, and A. P. Pruissers, 2004, A geo-
physical profile at the foot of the Dutch coastal dunes near the former
outlet of the ‘Old Rhine’, Netherlands: Journal of Geosciences/Geologie
en Mijnbouw, 83, 287–291, doi: 10.1017/S0016774600020370.

Singh, N. P., and T. Mogi, 2003, Effective skin depth of EM fields due to
large circular loop and electric dipole sources: Earth, Planets and Space,
55, 301–313, doi: 10.1186/BF03351764.

Stevens, J. D., J. M. Sharp, Jr., C. T. Simmons, and T. R. Fenstemaker, 2009,
Evidence of free convection in groundwater: Field-based measurements
beneath wind-tidal flats: Journal of Hydrology, 375, 394–409, doi: 10
.1016/j.jhydrol.2009.06.035.

Sudduth, K. A., N. R. Kitchen, D. B. Myers, and S. T. Drummond, 2010,
Mapping depth to argillic soil horizons using apparent electrical conduc-
tivity: Journal of Environmental & Engineering Geophysics, 15, 135–146,
doi: 10.2113/JEEG15.3.135.

Vrbancich, J., 2009, An investigation of seawater and sediment depth using a
prototype airborne electromagnetic instrumentation system — A case
study in Broken Bay, Australia: Geophysical Prospecting, 57, 633–
651, doi: 10.1111/j.1365-2478.2008.00762.x.

Weise, B. R., and W. A. White, 1980, Padre Island National Seashore: A
guide to the geology, natural environments, and history of a Texas barrier
island: Bureau of Economic Geology, University of Texas at Austin 17.

West, G. F., and J. C. Macnae, 1991, Physics of the electromagnetic induc-
tion exploration method, in M. N. Nabighian, ed., Electromagnetic meth-
ods in applied geophysics Vol. 2, Applications: SEG, Investigations in
geophysics, 5–45.

Weymer, B. A., M. E. Everett, T. S. de Smet, and C. Houser, 2015, Review
of electromagnetic induction for mapping barrier island framework geology:
Sedimentary Geology, 321, 11–24, doi: 10.1016/j.sedgeo.2015.03.005.

Won, I. J., D. A. Keiswetter, G. R. Fields, and L. C. Sutton, 1996, GEM-2: A
new multifrequency electromagnetic sensor: Journal of Environmental
and Engineering Geophysics, 1, 129–137, doi: 10.4133/JEEG1.2.129.

EMI utility in barrier islands E361

http://dx.doi.org/10.1016/S0025-3227(00)00030-X
http://dx.doi.org/10.1016/S0025-3227(00)00030-X
http://dx.doi.org/10.1190/geo2012-0004.1
http://dx.doi.org/10.1190/geo2012-0004.1
http://dx.doi.org/10.1190/geo2012-0004.1
http://dx.doi.org/10.1029/WR026i009p02127
http://dx.doi.org/10.1029/WR026i009p02127
http://coast.noaa.gov/digitalcoast/data/coastallidar
http://coast.noaa.gov/digitalcoast/data/coastallidar
http://coast.noaa.gov/digitalcoast/data/coastallidar
http://coast.noaa.gov/digitalcoast/data/coastallidar
http://www.nhc.noaa.gov/data/
http://www.nhc.noaa.gov/data/
http://www.nhc.noaa.gov/data/
http://www.nhc.noaa.gov/data/
http://tidesandcurrents.noaa.gov
http://tidesandcurrents.noaa.gov
http://tidesandcurrents.noaa.gov
http://dx.doi.org/10.1190/1.1803501
http://dx.doi.org/10.1190/1.1803501
http://dx.doi.org/10.1190/1.1803501
http://dx.doi.org/10.1190/geo2011-0368.1
http://dx.doi.org/10.1190/geo2011-0368.1
http://dx.doi.org/10.1190/geo2011-0368.1
http://dx.doi.org/10.1002/arp.1455
http://dx.doi.org/10.1002/arp.1455
http://dx.doi.org/10.1002/arp.1455
http://dx.doi.org/10.2136/vzj2009.0088
http://dx.doi.org/10.2136/vzj2009.0088
http://dx.doi.org/10.2136/vzj2009.0088
http://dx.doi.org/10.1111/j.1365-246X.2006.02957.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02957.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02957.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02957.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02957.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02957.x
http://dx.doi.org/10.1017/S0016774600020370
http://dx.doi.org/10.1017/S0016774600020370
http://dx.doi.org/10.1186/BF03351764
http://dx.doi.org/10.1186/BF03351764
http://dx.doi.org/10.1016/j.jhydrol.2009.06.035
http://dx.doi.org/10.1016/j.jhydrol.2009.06.035
http://dx.doi.org/10.1016/j.jhydrol.2009.06.035
http://dx.doi.org/10.1016/j.jhydrol.2009.06.035
http://dx.doi.org/10.1016/j.jhydrol.2009.06.035
http://dx.doi.org/10.1016/j.jhydrol.2009.06.035
http://dx.doi.org/10.2113/JEEG15.3.135
http://dx.doi.org/10.2113/JEEG15.3.135
http://dx.doi.org/10.2113/JEEG15.3.135
http://dx.doi.org/10.2113/JEEG15.3.135
http://dx.doi.org/10.1111/j.1365-2478.2008.00762.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00762.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00762.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00762.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00762.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00762.x
http://dx.doi.org/10.1016/j.sedgeo.2015.03.005
http://dx.doi.org/10.1016/j.sedgeo.2015.03.005
http://dx.doi.org/10.1016/j.sedgeo.2015.03.005
http://dx.doi.org/10.1016/j.sedgeo.2015.03.005
http://dx.doi.org/10.1016/j.sedgeo.2015.03.005
http://dx.doi.org/10.1016/j.sedgeo.2015.03.005
http://dx.doi.org/10.4133/JEEG1.2.129
http://dx.doi.org/10.4133/JEEG1.2.129
http://dx.doi.org/10.4133/JEEG1.2.129
http://dx.doi.org/10.4133/JEEG1.2.129

	Differentiating tidal and groundwater dynamics from barrier island framework geology: Testing the utility of portable multifrequency electromagnetic induction profilers
	Recommended Citation

	GEO-2015-0286 347..361

