40 research outputs found

    Textural Insights Into the Evolving Lava Dome Cycles at Santiaguito Lava Dome, Guatemala

    Get PDF
    The structures and textures preserved in lava domes reflect underlying magmatic and eruptive processes, and may provide evidence of how eruptions initiate and evolve. This study explores the remarkable cycles in lava extrusion style produced between 1922 and 2012 at the Santiaguito lava dome complex, Guatemala. By combining an examination of eruptive lava morphologies and textures with a review of historical records, we aim to constrain the processes responsible for the range of erupted lava type and morphologies. The Santiaguito lava dome complex is divided into four domes (El Caliente, La Mitad, El Monje, El Brujo), containing a range of proximal structures (e.g., spines) from which a series of structurally contrasting lava flows originate. Vesicular lava flows (with a'a like, yet non-brecciated flow top) have the highest porosity with interconnected spheroidal pores and may transition into blocky lava flows. Blocky lava flows are high volume and texturally variable with dense zones of small tubular aligned pore networks and more porous zones of spheroidal shaped pores. Spines are dense and low volume and contain small skeletal shaped pores, and subvertical zones of sigmoidal pores. We attribute the observed differences in pore shapes to reflect shallow inflation, deflation, flattening, or shearing of the pore fraction. Effusion rate and duration of the eruption define the amount of time available for heating or cooling, degassing and outgassing prior to and during extrusion, driving changes in pore textures and lava type. Our new textural data when reviewed with all the other published data allow a cyclic model to be developed. The cyclic eruption models are influenced by viscosity changes resulting from (1) initial magmatic composition and temperature, and (2) effusion rate which in turn affects degassing, outgassing and cooling time in the conduit. Each lava type presents a unique set of hazards and understanding the morphologies and dome progression is useful in hazard forecasting

    A novel method for the quantitative morphometric characterization of soluble salts on volcanic ash

    Get PDF
    <jats:title>Abstract</jats:title><jats:p>Formation of soluble sulfate and halide salts on volcanic ash particles via syn-eruptive interactions between ash surfaces and magmatic gases is a ubiquitous phenomenon in explosive eruptions. Surficial salts may be rapidly mobilized into their depositional environment undermining the quality of drinking water, harming aquatic life, and damaging soil and vegetation. Assessment of the potential for salt formation on ash and related environmental impacts have been based almost exclusively on bulk mineralogical or chemical analyses of ash; similarly, quantification of surficial salts has been made via leachate analysis only. However, it is the ash surface state and salt crystal properties that exert the predominant control on its reactivity, thus in determining their immediate environmental impact. Here, using scanning electron microscope (SEM) images, we present a novel image analysis protocol for the quantitative characterization of surficial salts, together with chemical analyses of resulting leachates. As volcanic ash proxies, we used synthetic rhyolitic glass particles (with systematic variations in FeO<jats:sub>T</jats:sub> and CaO content) and a crushed obsidian. Using an ash-gas reactor, we artificially surface-loaded samples with CaSO<jats:sub>4</jats:sub> and NaCl crystals, the most common crystal phases found on volcanic ash surfaces. Analogous variations were found using both methods: for CaSO<jats:sub>4</jats:sub> crystals, higher temperature treatments or increasing FeO<jats:sub>T</jats:sub> content at the same temperature led to higher concentrations of salt leachate and higher salt volumes; unexpectedly, increasing the CaO content caused only a minor increase in salt formation. In addition to bulk salt formation, morphometric results provided insight into formation processes, nucleation and growth rates, and limiting factors for salt formation. Higher temperatures increased CaSO<jats:sub>4</jats:sub> crystal size and surface coverage which we infer to result from higher element mobility in the glasses driving crystal growth. Increasing FeO<jats:sub>T</jats:sub> content of the glasses yielded increased salt surface coverage and leachate concentrations, but decreased crystal size (i.e., the salt number density increased). This latter effect likely relates to the role of iron as an electron-donor to charge balance salt-forming cation migration to the ash surface, indicating the importance of iron in determining surface reaction site density and, consequently, environmental reactivity. The controlling roles of ash composition and temperature on salt formation observed here can improve estimations for surface salt formation, volatile scavenging, and environmental impact for eruptions producing glass-rich ash. Our characterization protocol can therefore become a useful tool for the investigation of solid–gas reactions for terrestrial and planetary processes, and it also appears to be a powerful complement to research into atmospheric processes mediated by ash surfaces, such as ash aggregation and nucleation of water or ice on ash.</jats:p&gt

    Determination of complex refractive indices and optical properties of volcanic ashes in the thermal infrared based on generic petrological compositions

    Get PDF
    The spaceborne detection of volcanic ash clouds at infrared wavelengths helps to avoid regions with enhanced volcanic ash concentrations that pose a threat to aviation. Current volcanic ash data retrievals require detailed information on microphysical properties and the refractive index of volcanic ash, which are highly variable. Uncertainties in the latter currently limit the quality of volcanic ash nowcasts. Here, we introduce a novel method to calculate the complex refractive indices of volcanic ashes at wavelengths from 5 to 15 μm from measurements of their individual components based on generic petrological ash compositions. Thereby the refractive indices for volcanic glasses and bulk volcanic ashes of different chemical compositions are derived. The variability of the latter is mainly influenced by the silica content and the porosity and to a minor degree by the glass-to-crystals ratio. Calculating optical properties exhibits an equally large impact of bulk composition and grain size distribution, whereas particle shape is considered less important for particle sizes of the order 1 μm. Using these optical properties to determine brightness temperature differences between the 11 μm and 12 μm channels we show that the effect of ash composition is non-negligible for modern satellite instruments. Particularly, the dependence of the volcanic ash on the silica content (and to a much smaller extent on the glass-to-crystals ratio) is observable in its refractive index, its optical properties and the brightness temperature difference, indicating that composition might be retrievable to some degree by remote sensing methods

    Goodbye (Chinese) Shadow Banking, Hello Market-based Finance

    Get PDF
    © 2018 International Institute of Social Studies Shadow banking in developing and emerging countries (DECs) oscillates between two semantic poles. One definition is typically deployed by scholars for the narrow analysis of non-bank financial intermediation as a viable alternative to banking. The other, more recent, definition circulates in the policy world to capture a new agenda of engineering (securities) market-based finance. This article argues that this second definition captures the essential but neglected aspect of shadow banking in DECs. The ‘shadow banking into market-based finance’ narrative reaffirms the celebratory tone of the financial globalization cum liberalization thesis dominant before the global financial crisis. It seeks to depoliticize contentious debates about capital flows and the constraints that financialized globalization poses to development, instead asking DECs to encourage portfolio flows, relax the regulatory grip on shadow funding markets and tap into the growing global demand for securities that marks the new age of asset management. China illustrates this argument well. In joining the global push for market-based finance with the ambition to further its RMB internationalization agenda, China underestimates the (Minsky-type) fragilities involved

    Integrated constraints on explosive eruption intensification at Santiaguito dome complex, Guatemala

    Get PDF
    Protracted volcanic eruptions may exhibit unanticipated intensifications in explosive behaviour and attendant hazards. Santiaguito dome complex, Guatemala, has been characterised by century-long effusion interspersed with frequent, small-to-moderate (<2 km high plumes) gas-and-ash explosions. During 2015–2016, explosions intensified generating hazardous ash-rich plumes (up to 7 km high) and pyroclastic flows. Here, we integrate petrological, geochemical and geophysical evidence to evaluate the causes of explosion intensification. Seismic and infrasound signals reveal progressively longer repose intervals between explosions and deeper fragmentation levels as the seismic energy of these events increased by up to four orders of magnitude. Evidence from geothermobarometry, bulk geochemistry and groundmass microlite textures reveal that the onset of large explosions was concordant with a relatively fast ascent of a deeper-sourced (∼17–24 km), higher temperature (∼960–1020◦C) and relatively volatile-rich magma compared to the previous erupted lavas, which stalled at ∼2 km depth and mingled with the left-over mush that resided beneath the pre-2015 lava dome. We interpret that purging driven by the injection of this deep-sourced magma disrupted the long-term activity, driving a transition from low energy shallow shear-driven fragmentation, to high energy deeper overpressure-driven fragmentation that excavated significant portions of the conduit and intensified local volcanic hazards. Our findings demonstrate the value of multi-parametric approaches for understanding volcanic processes and the triggers for enigmatic shifts in eruption style, with the detection of vicissitudes in both monitoring signals and petrological signatures of the eruptive products proving paramount

    Impact of wound edge protection devices on surgical site infection after laparotomy: multicentre randomised controlled trial (ROSSINI Trial).

    Get PDF
    OBJECTIVE: To determine the clinical effectiveness of wound edge protection devices in reducing surgical site infection after abdominal surgery. DESIGN: Multicentre observer blinded randomised controlled trial. PARTICIPANTS: Patients undergoing laparotomy at 21 UK hospitals. INTERVENTIONS: Standard care or the use of a wound edge protection device during surgery. MAIN OUTCOME MEASURES: Surgical site infection within 30 days of surgery, assessed by blinded clinicians at seven and 30 days and by patient's self report for the intervening period. Secondary outcomes included quality of life, duration of stay in hospital, and the effect of characteristics of the patient and operation on the efficacy of the device. RESULTS: 760 patients were enrolled with 382 patients assigned to the device group and 378 to the control group. Six patients in the device group and five in the control group did not undergo laparotomy. Fourteen patients, seven in each group, were lost to follow-up. A total of 184 patients experienced surgical site infection within 30 days of surgery, 91/369 (24.7%) in the device group and 93/366 (25.4%) in the control group (odds ratio 0.97, 95% confidence interval 0.69 to 1.36; P=0.85). This lack of benefit was consistent across wound assessments performed by clinicians and those reported by patients and across all secondary outcomes. In the secondary analyses no subgroup could be identified in which there was evidence of clinical benefit associated with use of the device. CONCLUSIONS: Wound edge protection devices do not reduce the rate of surgical site infection in patients undergoing laparotomy, and therefore their routine use for this role cannot be recommended. TRIAL REGISTRATION: Current Controlled Trials ISRCTN 40402832

    Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action

    Get PDF
    © 2018 Small, 1st and 2nd-order, headwater streams and ponds play essential roles in providing natural flood control, trapping sediments and contaminants, retaining nutrients, and maintaining biological diversity, which extend into downstream reaches, lakes and estuaries. However, the large geographic extent and high connectivity of these small water bodies with the surrounding terrestrial ecosystem makes them particularly vulnerable to growing land-use pressures and environmental change. The greatest pressure on the physical processes in these waters has been their extension and modification for agricultural and forestry drainage, resulting in highly modified discharge and temperature regimes that have implications for flood and drought control further downstream. The extensive length of the small stream network exposes rivers to a wide range of inputs, including nutrients, pesticides, heavy metals, sediment and emerging contaminants. Small water bodies have also been affected by invasions of non-native species, which along with the physical and chemical pressures, have affected most groups of organisms with consequent implications for the wider biodiversity within the catchment. Reducing the impacts and restoring the natural ecosystem function of these water bodies requires a three-tiered approach based on: restoration of channel hydromorphological dynamics; restoration and management of the riparian zone; and management of activities in the wider catchment that have both point-source and diffuse impacts. Such activities are expensive and so emphasis must be placed on integrated programmes that provide multiple benefits. Practical options need to be promoted through legislative regulation, financial incentives, markets for resource services and voluntary codes and actions

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
    corecore