115 research outputs found

    Too close for comfort: spatial patterns in acorn barnacle populations

    Get PDF
    Spatial patterns in aggregations form as a result of the interplay between costs and benefits experienced by individuals. Such self-organisation of aggregations can be explained using a zonal model in which a short-range zone of repulsion and longer-range zone of attraction surrounding individuals leads to emergent pattern properties. The signal of these processes can be detected using spatial pattern analyses. Furthermore, in sessile organisms, post-settlement mortality reveals the relative costs and benefits of positions within the aggregation. Acorn barnacles are known to require contact with conspecifics for reproduction and are therefore believed to aggregate for this purpose; isolated individuals may also be more susceptible to abiotic stress and predation. At short distances, however, competition for space and resources is likely to occur. In this study spatial patterns of barnacles (Semibalanus balanoides L.) were analysed using pair-correlation functions. Individuals were dispersed at distances below 0.30 cm, but peak relative density occurred at a distance of 0.36 cm from conspecifics. This is much closer than required for reproductive access, implying a strong aggregative drive, up to the point of physical contact with neighbours. Nevertheless, analysis of dead barnacles illustrated that such proximity carries a cost as barnacles with many neighbours were more likely to have died. The inferences obtained from these patterns are that barnacles aggregate as closely as they can, and that local neighbourhood competition is a powerful determinant of mortality. These processes give rise to the observed pattern properties

    Netrin-3 Signals Through Serine Phosphorylation in Tetrahymena thermophila

    Get PDF
    The netrin family of proteins are structurally related to laminin and, while first discovered in the nematode Caenorhabditis elegans, are now known to be present in species throughout the animal kingdom, including humans. These proteins also have a wide variety of roles that include inhibition of apoptosis, chemorepulsion, and axonal guidance. Due to the results of previous studies involving netrin-1 in vertebrate systems, the current prevailing assumption is that netrins, when acting as chemorepellents, signal using tyrosine kinases. However, data that we gathered through phosphoserine-targeting ELISA assays and immunofluorescence microscopy demonstrates that the netrin-3 peptides signal Tetrahymena thermophila through serine phosphorylation instead, causing the ciliate protists to avoid netrin-3 peptides in response. Treatment with netrin-3 peptides also seems to cause mitotic inhibition in Tetrahymena, which can be reversed by addition of a serine kinase inhibitor. This new information suggests that netrin-3 may have physiological roles that have previously been unexplored

    Gastrointestinal Tract As Entry Route for Hantavirus Infection

    Get PDF
    Background: Hantaviruses are zoonotic agents that cause hemorrhagic fevers and are thought to be transmitted to humans by exposure to aerosolized excreta of infected rodents. Puumala virus (PUUV) is the predominant endemic hantavirus in Europe. A large proportion of PUUV-infected patients suffer from gastrointestinal symptoms of unclear origin. In this study we demonstrate that PUUV infection can occur via the alimentary tract. Methods: We investigated susceptibility of the human small intestinal epithelium for PUUV infection and analyzed the resistance of virions to gastric juice. As model for intestinal virus translocation we performed infection experiments with human intestinal Caco-2 monolayers. In animal experiments we infected Syrian hamsters with PUUV via the intragastric route and tested seroconversion and protective immunity against subsequent Andes virus challenge. Results: PUUV retained infectivity in gastric juice at pH >3. The virus invaded Caco-2 monolayers in association with endosomal antigen EEA1, followed by virus replication and loss of epithelial barrier function with basolateral virus occurrence. Cellular disturbance and depletion of the tight junction protein ZO-1 appeared after prolonged infection, leading to paracellular leakage (leak flux diarrhea). Moreover, animal experiments led to dose-dependent seroconversion and protection against lethal Andes virus challenge. Conclusions: We provide evidence that hantavirus can infect the organism via the alimentary tract and suggest a novel aspect of hantavirus infection and pathogenesis. Significance: Hantaviruses are zoonotic pathogens causing severe hemorrhagic fevers worldwide. They are transmitted to humans by small mammals. To date, these viruses were thought to infect exclusively through the airborne route by inhalation of aerosols from infectious animal droppings or by rodent bites. In our work we could show that the alimentary tract is an alternative path of infection for hantaviruses, meaning a new association of virus and disease. These findings have impact on current textbook knowledge and bring many implications for hantavirus epidemiology and outbreak prevention measures

    DNA Vaccine-Generated Duck Polyclonal Antibodies as a Postexposure Prophylactic to Prevent Hantavirus Pulmonary Syndrome (HPS)

    Get PDF
    Andes virus (ANDV) is the predominant cause of hantavirus pulmonary syndrome (HPS) in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35–40%). Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP) from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos). The natural “despeciation" of the duck IgY (i.e., Fc removed) results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥5,000 neutralizing antibody units (NAU)/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT). Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This is the first report demonstrating the in vivo efficacy of any antiviral product produced using DNA vaccine-duck/egg system

    Neurocognitive, Social-Behavioral, and Adaptive Functioning in Preschool Children with Mild to Moderate Kidney Disease

    Get PDF
    The negative impact of End Stage Kidney Disease on cognitive function in children is well established, but no studies have examined the neurocognitive, social-behavioral, and adaptive behavior skills of preschool children with mild to moderate chronic kidney disease (CKD)

    Interactive Effects of Climate Change with Nutrients, Mercury, and Freshwater Acidification on Key Taxa in the North Atlantic Landscape Conservation Cooperative Region

    Get PDF
    The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public–private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC regionspecific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena—freshwater acidification and eutrophication. We also prepared taxa case studies on GCCand GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region\u27s estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures and more frequent droughts. GCC may affect freshwater mussel populations via altered stream temperatures and increased sediment loading during heavy storms. Freshwater mussels are sensitive to un-ionized ammonia that more toxic at higher temperatures. We recommend studying the interactive effects of GCC on generation and bioavailability of methylmercury and how GCC-driven shifts in bird species distributions will affect avian exposure to methylmercury. Research is needed on how decreases in acid deposition concurrent with GCC will alter the structure and function of sensitive watersheds and surface waters. Studies are needed to determine how GCC will affect HABs and avian disease, and how more severe and extensive hypoxia will affect fish and shellfish populations. Regarding amphibians, we suggest research on 1) thermal tolerance and moisture requirements of species of concern, 2) effects of multiple stressors (temperature, desiccation, contaminants, nutrients), and 3) approaches to mitigate impacts of increased temperature and seasonal drought. We recommend studies to assess which mussel species and populations are vulnerable and which are resilient to rising stream temperatures, hydrological shifts, and ionic pollutants, all of which are influenced by GCC

    Interactive Effects of Climate Change with Nutrients, Mercury, and Freshwater Acidification on Key Taxa in the North Atlantic Landscape Conservation Cooperative Region

    Get PDF
    The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public-private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC region-specific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena-freshwater acidification and eutrophication. We also prepared taxa case studies on GCC- and GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region\u27s estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures and more frequent droughts. GCC may affect freshwater mussel populations via altered stream temperatures and increased sediment loading during heavy storms. Freshwater mussels are sensitive to un-ionized ammonia that more toxic at higher temperatures. We recommend studying the interactive effects of GCC on generation and bioavailability of methylmercury and how GCC-driven shifts in bird species distributions will affect avian exposure to methylmercury. Research is needed on how decreases in acid deposition concurrent with GCC will alter the structure and function of sensitive watersheds and surface waters. Studies are needed to determine how GCC will affect HABs and avian disease, and how more severe and extensive hypoxia will affect fish and shellfish populations. Regarding amphibians, we suggest research on 1) thermal tolerance and moisture requirements of species of concern, 2) effects of multiple stressors (temperature, desiccation, contaminants, nutrients), and 3) approaches to mitigate impacts of increased temperature and seasonal drought. We recommend studies to assess which mussel species and populations are vulnerable and which are resilient to rising stream temperatures, hydrological shifts, and ionic pollutants, all of which are influenced by GCC

    Host‐derived population genomics data provides insights into bacterial and diatom composition of the killer whale skin

    Get PDF
    Recent exploration into the interactions and relationship between hosts and their microbiota has revealed a connection between many aspects of the host's biology, health and associated micro-organisms. Whereas amplicon sequencing has traditionally been used to characterize the microbiome, the increasing number of published population genomics data sets offers an underexploited opportunity to study microbial profiles from the host shotgun sequencing data. Here, we use sequence data originally generated from killer whale Orcinus orca skin biopsies for population genomics, to characterize the skin microbiome and investigate how host social and geographical factors influence the microbial community composition. Having identified 845 microbial taxa from 2.4 million reads that did not map to the killer whale reference genome, we found that both ecotypic and geographical factors influence community composition of killer whale skin microbiomes. Furthermore, we uncovered key taxa that drive the microbiome community composition and showed that they are embedded in unique networks, one of which is tentatively linked to diatom presence and poor skin condition. Community composition differed between Antarctic killer whales with and without diatom coverage, suggesting that the previously reported episodic migrations of Antarctic killer whales to warmer waters associated with skin turnover may control the effects of potentially pathogenic bacteria such as Tenacibaculum dicentrarchi. Our work demonstrates the feasibility of microbiome studies from host shotgun sequencing data and highlights the importance of metagenomics in understanding the relationship between host and microbial ecology

    Association of prenatal modifiable risk factors with attention-deficit hyperactivity disorder outcomes at age 10 and 15 in an extremely low gestational age cohort

    Get PDF
    BackgroundThe increased risk of developing attention-deficit hyperactivity disorder (ADHD) in extremely preterm infants is well-documented. Better understanding of perinatal risk factors, particularly those that are modifiable, can inform prevention efforts.MethodsWe examined data from the Extremely Low Gestational Age Newborns (ELGAN) Study. Participants were screened for ADHD at age 10 with the Child Symptom Inventory-4 (N = 734) and assessed at age 15 with a structured diagnostic interview (MINI-KID) to evaluate for the diagnosis of ADHD (N = 575). We studied associations of pre-pregnancy maternal body mass index (BMI), pregestational and/or gestational diabetes, maternal smoking during pregnancy (MSDP), and hypertensive disorders of pregnancy (HDP) with 10-year and 15-year ADHD outcomes. Relative risks were calculated using Poisson regression models with robust error variance, adjusted for maternal age, maternal educational status, use of food stamps, public insurance status, marital status at birth, and family history of ADHD. We defined ADHD as a positive screen on the CSI-4 at age 10 and/or meeting DSM-5 criteria at age 15 on the MINI-KID. We evaluated the robustness of the associations to broadening or restricting the definition of ADHD. We limited the analysis to individuals with IQ ≥ 70 to decrease confounding by cognitive functioning. We evaluated interactions between maternal BMI and diabetes status. We assessed for mediation of risk increase by alterations in inflammatory or neurotrophic protein levels in the first week of life.ResultsElevated maternal BMI and maternal diabetes were each associated with a 55–65% increase in risk of ADHD, with evidence of both additive and multiplicative interactions between the two exposures. MSDP and HDP were not associated with the risk of ADHD outcomes. There was some evidence for association of ADHD outcomes with high levels of inflammatory proteins or moderate levels of neurotrophic proteins, but there was no evidence that these mediated the risk associated with maternal BMI or diabetes.ConclusionContrary to previous population-based studies, MSDP and HDP did not predict ADHD outcomes in this extremely preterm cohort, but elevated maternal pre-pregnancy BMI, maternal diabetes, and perinatal inflammatory markers were associated with increased risk of ADHD at age 10 and/or 15, with positive interaction between pre-pregnancy BMI and maternal diabetes

    Genomic approaches to understanding population divergence and speciation in birds

    Get PDF
    © 2016 American Ornithologists\u27 Union. The widespread application of high-throughput sequencing in studying evolutionary processes and patterns of diversification has led to many important discoveries. However, the barriers to utilizing these technologies and interpreting the resulting data can be daunting for first-time users. We provide an overview and a brief primer of relevant methods (e.g., whole-genome sequencing, reduced-representation sequencing, sequence-capture methods, and RNA sequencing), as well as important steps in the analysis pipelines (e.g., loci clustering, variant calling, whole-genome and transcriptome assembly). We also review a number of applications in which researchers have used these technologies to address questions related to avian systems. We highlight how genomic tools are advancing research by discussing their contributions to 3 important facets of avian evolutionary history. We focus on (1) general inferences about biogeography and biogeographic history, (2) patterns of gene flow and isolation upon secondary contact and hybridization, and (3) quantifying levels of genomic divergence between closely related taxa. We find that in many cases, high-throughput sequencing data confirms previous work from traditional molecular markers, although there are examples in which genome-wide genetic markers provide a different biological interpretation. We also discuss how these new data allow researchers to address entirely novel questions, and conclude by outlining a number of intellectual and methodological challenges as the genomics era moves forward
    corecore