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ABSTRACT
The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public–private partnership that provides

information to support conservation decisions that may be affected by global climate change (GCC) and other threats.
The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US
National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy
precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects
of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural
resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC region-
specific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex
environmental phenomena—freshwater acidification and eutrophication. We also prepared taxa case studies on GCC-
and GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high
conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater
acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region
that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the
region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia
may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful
algal blooms (HABs). In several of the region's estuaries, HABs have been associated with bird die-offs. In the NA LCC
region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher
temperatures and more frequent droughts. GCC may affect freshwater mussel populations via altered stream
temperatures and increased sediment loading during heavy storms. Freshwater mussels are sensitive to un-ionized
ammonia that more toxic at higher temperatures. We recommend studying the interactive effects of GCC on generation
and bioavailability of methylmercury and how GCC-driven shifts in bird species distributions will affect avian exposure to
methylmercury. Research is needed on how decreases in acid deposition concurrent with GCC will alter the structure and
function of sensitive watersheds and surface waters. Studies are needed to determine how GCC will affect HABs and avian
disease, and how more severe and extensive hypoxia will affect fish and shellfish populations. Regarding amphibians, we
suggest research on 1) thermal tolerance and moisture requirements of species of concern, 2) effects of multiple stressors
(temperature, desiccation, contaminants, nutrients), and 3) approaches to mitigate impacts of increased temperature and
seasonal drought. We recommend studies to assess which mussel species and populations are vulnerable and which are
resilient to rising stream temperatures, hydrological shifts, and ionic pollutants, all of which are influenced by GCC. Integr
Environ Assess Manag 2015;11:355–369. © 2014 SETAC

Keywords: Algal blooms Contaminants Global climate change Hypoxia Nutrients

INTRODUCTION
The US National Climate Assessment (Melillo et al. 2014)

summarized global climate change (GCC) and its present and
potential impacts on the United States. This report and others
(IPCC2007; Lemmen et al. 2008) indicate that thewarming of
the North American climate is unequivocal and project more
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rapid temperature increases, with changing patterns and
intensity of precipitation. In addition to direct effects on
plants and animals, GCC causes shifts in the home ranges of
species with cascading impacts through ecosystems. For
example, the area of the Northeast United States climatically
suitable for the Eastern hemlock (Tsuga canadensis) is
projected to contract due to warmer winters that favor the
spread of a nonnative pest, the hemlock wooly adelgid (Adelges
tsugae). Combined effects of climate and pests would not only
affect hemlock populations but may result in loss or a
geographic shift in associated bird and mammal species.
Furthermore, reduced hemlock density may alter soil charac-
teristics enhancing transport of nutrients into streams (Frumh-
off et al. 2007).
The release of toxic chemicals and excess nutrients into the

environment affects the survival, growth, and reproduction of
microorganisms, plants, and animals (Rabelais et al. 2010;
Sparling et al. 2010; Coristine and Kerr 2011). The topic of
GCC–contaminant interactions was synthesized by Schiedek
et al. (2007) and Noyes et al. (2009). A comprehensive
investigation of GCC–contaminant interactions was under-
taken in 2011 by a Society for Environmental Toxicology and
Chemistry (SETAC)-sponsored international workshop (Stahl
et al. 2013). A key concept advanced was that GCC, toxicants,
and biota interact in 2 primary ways. The first involves changes
in chemical distribution and availability to biota thatmay occur
due to GCC. This could result from GCC-induced changes in
the physical and/or chemical nature of the contaminant’s local
environment or from changes in human response to GCC. For
example, in response to increased temperature and changes in
precipitation, there may be shifts in agriculture and associated
pesticide application and changing patterns of power demand
and generation (and resulting pollution). The second inter-
action can occur in biota where toxicity or climate adaptation
can be altered. Climate-induced toxicant sensitivities (CITS)
are manifested when GCC alters environmental conditions,
affecting biochemical and physiological processes and chang-
ing responses and sensitivity of organisms to toxicants.
Toxicant-induced climate susceptibility (TICS) occurs when
a toxicant hinders the ability of an organism to acclimate to
environmental conditions altered by GCC (Hooper et al.
2013). Such interactions can potentially affect populations and
ecological communities (Moe et al. 2013). Paradigms were
suggested for adapting ecological risk assessments (Landis et al.
2013) and natural resource damage assessments (Rohr et al.
2013) to accommodate GCC-contaminant interactions into
the environmental regulatory process.
The US Department of the Interior established 22 Land-

scape Conservation Cooperatives (LCCs) in the United States
and adjacent areas of Mexico and Canada as part of a
Secretarial Order to address GCC impacts (Salazar 2010).
LCCs are geographically based partnerships among federal,
regional, and state and/or provincial agencies, Native Amer-
ican tribes, universities, and nongovernmental organizations.
LCCs address increasing land use pressures, resource threats,
and uncertainties amplified by a rapidly changing climate,
enabling the conservation community to enhance andmaintain
landscapes that sustain natural and cultural resources.
In this article, we discuss GCC interactions with selected

contaminants, nutrients, and environmental processes within
the North Atlantic LCC (NA LCC) region (Figure 1). This
region extends from southeast Virginia north to and including
parts of southern Quebec and the Maritime Provinces of

Canada (New Brunswick, Prince Edward Island, and Nova
Scotia). Fiftymillion people live within this 50million-ha area.
Ecoregions and habitat types include freshwater, estuarine, and
coastal marine waters; wetlands; agricultural lands; urban and
developed lands; and piedmont, coastal plains, andmountains.
The primary land cover types are forest (56%), agriculture
(14%), urban and suburban developed lands (13%), forested
wetlands (9%), open water (4%), and emergent marsh (2%).
The NA LCC region includes highly urban and suburban
landscapes (e.g., Washington, DC, Baltimore, Philadelphia,
New York City, Boston), as well as rural and heavily forested
areas.
The region’s history of agriculture, forestry, industrializa-

tion, resource extraction, and urbanization has placed severe
demands on natural resources and the environment. Never-
theless, these ecosystems still support diverse fish and wildlife
resources, including threatened and endangered species. The
NA LCC (USFWS 2009) list of high priority species for
conservation includes threatened and endangered species, as
well as those that have experienced population declines and
may be subjected to habitat alteration from changes in land use
and GCC.
The goal of the current assessment is to provide theNALCC

with a series of demonstrations on how to consider potential
threats to natural resources posed by GCC interactions with
contaminants, nutrients, and environmental processes. We
chose to focus on 5 case studies to illustrate the range of effects,
using data from the NA LCC region. We 1) describe how 3
stressors (e.g., eutrophication, Hg, and freshwater acidifica-
tion) may be affected by GCC, 2) summarize the potential
effects of GCC and GCC-stressor interactions on 2 key taxa
(amphibians and freshwater mussels), and 3) provide research
recommendations for these stressors and taxa.

METHODS
The NA LCC leadership identified contaminant–climate

interactions as a knowledge gap for the partnership and
provided funding to address that need. The lead author
organized a workshop in June 2012 with a panel of scientists
with varied expertise to develop objectives, strategy, and tasks.
This process was not, by design, an expert solicitation, but
rather an attempt to bring together scientists with a diverse
knowledge of regional issues to consider the potential for
climate change to exacerbate contaminant impacts. The
USFWS Literature Search Service (approximately 30 relevant
databases) was used to identify published and unpublished
studies that were provided to workshop participants as
background information. Searches used terms related to
climate change, regions (e.g., Northeast, Adirondacks, Ches-
apeake Bay), contaminants, and nutrients. More articles were
identified through citation searches with Google Scholar
(Google, Mountain View, CA) and Web of Science (Thomp-
son Reuters, New York).
We reviewed GCC reports, literature, and models of

observed and predicted changes in temperature, precipitation
patterns, and sea level rise in theNALCC region.We discussed
the SETAC workshop findings to provide a framework for
examining interactions between GCC and toxicants. Just as
GCCmodels have been geographically downscaled for specific
regions, we constrained the approach and findings of the
SETAC workshop to the NA LCC region.
The authors used their knowledge of ecotoxicology, nutrient

cycling, biogeochemical processes, GCC, and experience in
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the NA LCC region to evaluate the available literature. To
narrow the universe of chemicals under consideration as case
studies, we started with the contaminant groups in the US
Environmental Protection Agency (USEPA)/US Geological
Survey/USFWS evaluation (2012) of toxic contaminants in the
Chesapeake Bay watershed. These were: polychlorinated
biphenyls, dioxins and furans, polycyclic aromatic hydro-
carbons, petroleum hydrocarbons, pesticides, pharmaceuti-
cals, household and personal care products, polybrominated
diphenyl ether flame retardants, biogenic hormones, metals,
and metalloids. The list was amended to include road salts
because of concerns of the long-term effects of their
application on stream ecosystems (Kaushal et al. 2005).
Because our scope includes eutrophication and associated

effects, nutrients, algal toxins, and hypoxia were included.
Finally, the topic of freshwater acidification, a major concern
within the NA LCC region, was added.

At present, there are no compounds, chemical groupings, or
processes that have an extensive literature base on stressor–
GCC interactions. For many stressors, the paucity of data
would make discussion almost entirely speculative. Thus, we
decided to focus on a few stressors for which there was
sufficient NA LCC- specific information to prepare examples
for an informed discussion. We developed stressor case studies
to discuss GCC linkages with: 1) the related and interacting
phenomena of eutrophication, hypoxia, and harmful algal
blooms (HABs); 2) bioavailability and effects of Hg; and 3)
ecosystem responses to freshwater acidification. These issues

Figure 1. Map of the US Fish and Wildlife Service Northeast Region (Region 5) showing the North Atlantic Landscape Conservation Cooperative.
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were chosen as examples of the diverse types of contaminant/
nutrient/environmental processes that interact with GCC. In
addition to GCC, loadings and effects may be altered by
environmental regulations, economic demand, and sensitivity
of already impacted landscapes (Staudt et al. 2013).
These 3 stressors were not selected to be prioritized above

other contaminants, nutrients, and environmental processes,
some of which may be equally important for investigation for
GCC interactions but are less well-studied. For example,
polychlorinated biphenyls (PCBs), organochlorine pesticides,
and polynuclear aromatic hydrocarbons (PAHs) all bind
strongly to sediments. Certainly, any GCC processes that
facilitate soil and streambank erosion from contaminated areas
will increase the release of such compounds from the
watershed to water bodies. A variety of taxa may be affected;
however, little NALCC-specific information onGCC linkages
with these contaminants was available.
Based on the NALCC’s goal to conserve priority species, we

chose to also investigate GCC– contaminant interactions using
specific taxa as a focus. Thus, we developed taxa case studies on
direct GCC effects and GCC-contaminant/nutrient/process
effects on amphibians and freshwater mussels. Conservation-
ists have documented population declines and extinctions of
these taxa inmany parts of theworld, includingNorthAmerica
(amphibians: Stuart et al. 2004; Hoffman et al. 2010; Adams
et al. 2013; mussels: Williams et al. 1993; Neves et al. 1997).
Although in North America, the greatest biodiversity and
number of species are found in the US Southern Appalachians
(Chaplin et al. 2000), these taxa are key to the functioning of
freshwater ecosystems of the NA LCC region. We recognize
that many other taxa are affected by GCC, some of which are
discussed in the 3 stressor case studies. The holistic focus on
these 2 taxa, allowed us to interpret GCC interactive effects of
other stressors (e.g., pesticides, ionic pollutants) in addition to
the 3 stressor case studies.

CLIMATE CHANGE IN THE NA LCC REGION
The consequences of GCC in the United States were

recently summarized in the National Climate Assessment
(Melillo et al. 2014). This report features regional analyses
including the Northeast states (WV through ME) (Horton
et al. 2014), which overlap the NA LCC region. Other reports
have focused on geographic areas relevant to theNALCC such
as Canada (Lemmen et al. 2008; Coristine and Kerr 2011),
Chesapeake Bay watershed (Najjar et al. 2010), and Lake
Champlain basin (Stager and Thill 2010). Although climate
within the Northeast region is diverse and variable, the overall
documented changes described by Horton et al. (2014) were

1. Between 1895 and 2011, average annual temperatures
increased by almost 1.1 °C;

2. Between 1895 and 2011, average annual precipitation
increased by approximately 12.7 cm;

3. Sea level increased by approximately 0.3meters since 1900,
exceeding the global average by 50%, which has increased
susceptibility to storm surges and resulted in more coastal
flooding.

4. Between 1958 and 2010, the amount of precipitation falling
in very heavy events increased by 74%. This change was
greater than that in any other US region.

Horton et al. (2014) summarized the following projected
changes that would occur in the region under International

Panel on Climate Change (IPCC 2007) scenarios (A2 and B1)
with varying emission rates of heat–trapping gases as follows:
1) increases in the frequency, intensity, and duration of heat
waves; in the southern part of the region there may be a
doubling of days per year with maximum temperatures greater
than 35 °C by the 2050s; 2) changes in precipitation are less
certain but include projections for increasing winter precip-
itation, frequency of heavy downpours (with river flooding),
and seasonal drought; and 3) global sea levels are projected to
rise between 0.3m and 1.2m by 2100, with the rise in the
Northeast exceeding the global average by up to 10 cm;
occurrence of coastal flood events could triple by 2100.
We analyze the interactive effects of these documented and

projected climatic changes within theNALCC regionwith the
following stressor and taxa case studies.

STRESSOR CASE STUDIES

Mercury

Mercury (Hg), a contaminant of concern, is distributed
worldwide largely as a result of atmospheric emissions and long
range transport. Approximately one-third of atmospheric Hg
emissions are from direct anthropogenic sources, the largest of
which are coal-fired power plants, cement production, and
artisanal gold mining. The remaining two-thirds of emissions
are from natural sources, such as volcanoes, burning biomass,
and remobilization of previously deposited Hg (Driscoll et al.
2013). In the NA LCC region, most Hg is derived from
regional (eastern North American) and global sources
(Driscoll, Han et al. 2007), but there are local effects from
industrial waste site and urban releases (Nobis Engineering
2008). After deposition, Hg may be sequestered in soil,
reemitted to the atmosphere or transported from the water-
shed to surface waters. Bacterial transformation of inorganic
Hg into methylmercury (MeHg), which strongly biomagnifies
in aquatic and terrestrial food webs, is most active under
reducing conditions in sediments of wetlands, riparian zones,
intertidal areas, and coastal waters. Human exposure to MeHg
occurs largely through fish consumption.
MeHg can threaten the integrity of terrestrial and aquatic

ecosystems by adversely affecting the physiology, behavior,
and reproductive success of high trophic level species. Residue-
effect thresholds (i.e., concentrations associated with adverse
effects) have been proposed for fish (Sandheinrich andWiener
2011; Shore et al. 2011), avian piscivores (Evers et al. 2008;
Depew et al. 2012), and avian invertivores (Jackson et al.
2011). The Canada Council of Ministers of the Environment
(CCME 2000) issued national water quality criteria for the
protection of wildlife from food-chain derived MeHg. As of
2011, all 50 US states had fish consumption advisories due to
Hg contamination. There are statewide or lake-specific Hg
advisories for freshwater habitats in all NA LCC states, the 4
Canadian provinces, and in coastal waters of Connecticut,
Rhode Island, Massachusetts, New Hampshire, and Maine
(USEPA 2013a; Schmeltz et al. 2011). Many advisories are
restricted to top predator species and limits are often more
stringent for children and women of childbearing age.
The NA LCC region includes ecosystems that are partic-

ularly sensitive to Hg inputs. Forested areas are effective in
scavenging Hg from the atmosphere and exhibit limited losses
from evasion (land–atmosphere exchange). The production of
MeHg in sediments is mediated by sulfate and Fe-reducing
bacteria; factors that affect methylation include temperature,
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hydrology, hydrological regime (drawdowns of reservoirs), and
the concentration of dissolved organic matter (Driscoll et al.
2013). Abundant wetlands within the NA LCC region
promote the formation of MeHg and supply dissolved organic
carbon (DOC) that facilitates the transport of Hg to down-
stream surface waters. Low productivity surface waters in the
Adirondacks and other northeastern states impacted by acidic
deposition exhibit elevated concentrations of Hg in fish and
aquatic wildlife (Driscoll, Han et al. 2007; Yu et al. 2011). In
addition, production of MeHg in sediments of estuarine and
coastal wetlands and intertidal and shelf zones contributes to
contamination of coastal fisheries (Chen et al. 2009, 2012).

Evers et al. (2007) defined biological Hg hotspots as
locations that, when compared to surrounding landscapes,
are characterized by concentrations of Hg in biota (e.g., fish,
birds, mammals) that exceed human or wildlife health criteria.
The NA LCC region contains many such hotspots, as
evidenced by elevated Hg in fish tissue and common loon
(Gavia immer) blood. Examples include parts of the Adir-
ondacks and Nova Scotia; several reservoirs subject to draw-
down and flooding cycles in New Hampshire and Maine; and
areas with high local Hg inputs from hazardous waste sites
(e.g., Sudbury River, Massachusetts) (Nobis Engineering
2008).

Within the NA LCC region, elevated MeHg concentrations
have been reported in fish (Kamman et al. 2005), amphibians
(Bergeron et al. 2011), reptiles (Bergeron et al. 2007), birds
(Evers et al. 2005, 2008; Jackson et al. 2011), and mammals
(Yates et al. 2005, 2014). Elevated Hg concentration was
associated with impaired reproduction in common loons
(Gavia immer) collected from lakes in New Hampshire and
Maine (Evers et al. 2008). In loons from New Brunswick and
Nova Scotia lakes, decreased productivity was associated with
elevated Hg in loon blood or prey fish (Burgess and Meyer
2008). Bird species of high conservation concern, such as the
saltmarsh sparrow, Ammodramus caudacutus (Lane et al.
2011), and the rusty blackbird, Euphagus carolinus (Edmonds
et al. 2010), also have Hg body burdens at concentrations
associated with reduced nesting success in the Carolina wren
(Evers et al. 2011; Jackson et al. 2011). In a study on 21 salt
marshes including 5 National Wildlife Refuges (NWRs) from
NewYork throughMaine, Lane et al. (2011) found the highest
bloodHg concentrations in saltmarsh sparrows on Parker River
NWR (Massachusetts), which receives flow from Hg-con-
taminated interior watersheds. The authors suggested that
GCC-related stressors, including higher temperature, rising
water levels, and/or changes in wetting–drying regimes, could
increase Hg bioavailability in coastal wetlands.

We anticipate that aspects of GCC such as higher temper-
atures and changes in precipitation will alter the transport, net
methylation, and trophic transfer of Hg (Chen et al. 2012). For
example, Selvendiran et al. (2008) observed marked increases
in net MeHg production associated with seasonal elevation in
temperature in an Adirondack forest watershed wetland.
Whether GCCwill increase or decrease soil moisture in forests
is uncertain (Groffman et al. 2012), and therefore, until
projections in soil moisture and its seasonal change can be
improved effects on Hg methylation will not be predicted
effectively.

A meta-analysis demonstrated a positive relation between
MeHg bioaccumulation in aquatic food webs and latitude such
that trophic magnification was greater in polar and temperate
zones versus tropical zones (Lavoie et al. 2013). The

mechanism underlying this pattern is not clear, but implies
an inverse relationship between trophic transfer of MeHg and
the higher temperatures anticipated under GCC. In field and
laboratory studies with the mummichog, Fundulus heteroclitus,
however, Djikstra et al. (2013) reported greater whole body
MeHg concentrations at higher temperatures. The field studies
used mesh enclosures to restrict the fish frommoving between
salt marsh pools located along theGulf ofMaine coastline. Fish
were exposed to sediments containing Hg, and there was a
natural temperature gradient in the pools similar to GCC-
projected increases of 1.5 °C to 4.5 °C for temperate waters. In
the laboratory, fish were exposed to dietary Hg for 30 days at
temperatures of 15 °C, 21 °C, or 27 °C. In both laboratory and
field studies, there was a significant positive relationship
between whole body Hg accumulation and temperature.

A temperature–Hg interaction was reported by Hallinger
and Cristol (2011) in a field study in Virginia in free-ranging
tree swallows (Tachycineta bicolor). Breeding success was
evaluated from nest boxes at 19 Hg-contaminated sites (mean
blood Hg: 3.03mg/g) and 17 reference sites (mean blood Hg:
0.16mg/g). Birds were also exposed to varied ambient
temperature and precipitation throughout the breeding cycle.
High Hg concentrations were associated with reduced
hatching and fledging success, and highly exposed birds
produced approximately one less fledgling per nest than their
reference counterparts. Unusually high ambient temperatures
early in the nestling period were associated with reduced
reproductive output in polluted sites but not in reference birds.
In contrast, little effect of Hg on success of nestlings was
observed when temperatures were cooler, and precipitation
had no detectable interaction with Hg. Importantly, this study
represents the first documentation of negative effects asso-
ciated with the interaction ofGCCmetrics andHg exposure in
a bird population. Potential mechanisms of GCC induction of
increased Hg toxicity (TICS) as well as Hg impacts on climate
adaptation (CITS) were proposed and demonstrated using an
adverse outcome pathway (AOP) approach incorporating
toxicity and climate adaptation pathways (as described in
Hooper et al. [2013] and shown in Figure 2).

Adult common loons in the Rangeley Lakes Region ofMaine
and New Hampshire with low Hg concentrations exhibited
little change in chick production regardless of rainfall (D.
Evers, Biodiversity Research Institute, personal communica-
tion). Adults with elevated Hg concentrations, however,
produced significantly fewer fledged young during the wettest
summers. It was thought that adults with lower Hg concen-
trations exhibited adaptively plastic behaviors that allow
adequate fledging success rates across a range of climatic
conditions. Adults with elevated Hg concentrations appeared
to have less adaptive plasticity, resulting in lowered fitness in
wet conditions (an example of TICS, Figure 2) (Hooper et al.
2013).

Freshwater acidification

Acidic deposition is largely comprised of sulfuric and nitric
acid derived from sulfur dioxide (SO2) and mono-nitrogen
oxides (NOx), respectively. These compounds are emitted to
the atmosphere primarily by the burning of fossil fuels.
Reduced N, largely in the form of ammonia from agricultural
emission sources also contributes to acidification (Driscoll et al.
2003). Acidic deposition continues to alter soils in sensitive
areas of the NA LCC region, including the Central Appa-
lachians, the Catskills, and Adirondack regions of New York

Climate Change, Contaminants, and Nutrients in the Northeast—Integr Environ Assess Manag 11, 2015 359



and forest upland portions of New England and theMaritimes.
Effects in soil include depletion of available calcium (Ca2þ),
magnesium (Mg2þ) and other nutrient cations from exchange-
able sites, and greater accumulation of S and N. Acidic
deposition contributed to declines of red spruce (Picea rubens)
and sugar maple (Acer saccharum) through leaching and
depletion of Ca2þ andmobilization of Al (Driscoll et al. 2001).
Surface water quality is degraded through lowered pH,
diminished acid-neutralizing capacity (ANC), and increased
dissolved inorganic Al concentrations. Although emissions of
SO2 have decreased over the past 20 years (see below),
concentrations of SO4

2� in streams in acid-impacted regions,
such as the forested uplands of the NA LCC region, generally
remain high compared to background (Fakhraei et al. 2014).
The Adirondacks (Figure 1) is the region in North America

most affected by acidic deposition (Driscoll et al. 1991). In a
1991–1994 study of 1812 Adirondack Lakes >1ha in area,
41% were chronically acidic or sensitive to episodic acid-
ification (Driscoll et al. 2001). Seasonal acidification occurs
from the winter and spring pulse of acidity and the
corresponding decrease in pH and ANC in streams (Wigington
et al. 1996). Episodic acidification occurs in spring snowmelt
and large rain events, resulting in sudden pulses of acids and
increases in concentrations of dissolved inorganic Al (Baker
et al. 1996). In many streams and lakes, decreased pH and

increased dissolved inorganic Al have resulted in physiological
changes, greater mortality of sensitive life history stages, and
reduced diversity and abundance of aquatic life including
zooplankton, macroinvertebrates, and fish (Driscoll et al.
2001).
GCC may adversely affect sensitive tree species in the NA

LCC region. This would occur through drought stress and
increases in soil freezing anticipated with rising temperature
and shifting runoff patterns from early loss of snowpack
(Tierney et al. 2001; Smithwick et al. 2013). Snowpack
insulates the soil during winter. Under low snowpack
conditions, soil freezing events result in the mortality of fine
roots, which limits N uptake by trees during the following
growing season and contributes to elevated NO3

� loss and
associated acidification.
As a result of the Clean Air Act Amendments of 1990

(CAAA) and the NOx Budget Trading Program (NBP,
initiated in 2003), there have been marked declines in
emissions of SO2 and NOx and acidic deposition. From 1990
through 2009, there was a 64% decrease in SO2 and a 70%
decrease in NOx emissions from CAAA and NBP sources
nationally (USEPA 2009). Continuous and significant decreas-
ing trends in wet SO4

2� deposition have been observed in
AdirondackNY lake watersheds (Waller et al. 2012), declining
33% over the study period (1991–2007). Annual wet NO3

�

Figure 2. Adverse outcome pathways (AOPs) for investigating direct effects of Hg on adult brood care (Evers et al. 2008) and combined effects of extreme heat
events and Hg toxicity in tree swallow nestlings (Hallinger and Cristol 2011). Retrospective pathways for potential climate-induced toxicant sensitivity (CITS) and
toxicant-induced climate sensitivity (TICS) mechanisms are indicated. DIO¼ iodothyronine deiodinase; GPx¼glutathione peroxidase; GSH¼ reduced
glutathione; H2O2¼hydrogen peroxide; MT¼metallothionein; NMDA-R¼N-methyl-D-aspartic acid receptor; NO¼nitric oxide; OH¼hydroxyl; RSH¼protein
thiol; RSeH¼protein selenol; T3¼ triiodothyronine; TrxR¼ thioredoxine reductase. Modified from Hooper et al. (2013).
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deposition decreased by 32% during the same period. Regional
trends in surface water chemistry indicate that acid-sensitive
lakes and streams throughout the NA LCC region are
recovering slowly in response to decreased acid deposition
(Driscoll, Driscoll et al. 2007; Stoddard et al. 1999 2003). For
example, the percentage of acidic Adirondack lakes (ANC
<0meq/L) decreased from 15.5% (284 lakes) to 8.3% (152
lakes) since implementation of the regulations (Waller et al.
2012). Coincident with decreases in acidic deposition and
recovery of the acid-base status of soils and surface waters,
there has been a compensatory increase in concentrations of
dissolved organic carbon (DOC) (Driscoll, Driscoll et al.
2007). These increases in DOC can affect chemical and
biological endpoints of recovery from acidification, including
the toxicity of Al and the extent of thermal stratification in
Adirondack Lakes.

It is difficult to assess the extent towhich changing climate in
the NA LCC region will alter recovery from acidic deposition.
Greater overall precipitation and heavier storms would result
in greater runoff along the top layers of soil (Chen et al. 1984)
that could delay acidification recovery. In contrast, diminished
peak discharge during snowmelt associated with loss of
snowpack due to higher temperatures would decrease the
severity of episodic acidification and associated effects.
Pourmoktarian et al. (2012) conducted long-term simulations
of hydrochemical responses to future changing climate at
Hubbard Brook Experimental Forest inNewHampshire. Their
models predicted that increases in temperature projected for
the region in future decades will increase net mineralization
and leaching of soil nitrogen that accumulated from decades of
atmospheric nitrogen deposition. This condition resulted in
marked acidification of soil and surface waters due to elevated
NO3

� leaching, causing more severe conditions than had
occurred during historical and current acidification from acidic
deposition. These simulations also indicated that, in the future,
peak conditions of acidification in streams will shift from the
spring to the fall. This shift would result in a reduced pulse of
toxic monomeric Al, which is released largely by snowmelt
(Murdoch and Stoddard 1992).

Eutrophication, harmful algal blooms, and hypoxia

Anthropogenic eutrophication (enrichment of waters by N,
P, and the resulting plant growth) is a major concern in
coastal, estuarine, and fresh waters of the NA LCC
region. Factors responsible include runoff of nutrients from
agricultural fertilizers and animal wastes, loadings from
wastewater treatment, volatilization and subsequent deposi-
tion of ammonium from fertilizers and animal wastes,
and atmospheric deposition of nitrogen oxides from fossil
fuel combustion (Rabalais et al. 2009 2010). Two eutrophi-
cation-associated phenomena are hypoxia (waters with
<2mg/L dissolved oxygen [DO] concentrations) and algal
blooms, including HABs that are toxic to fish, wildlife, and
humans.

Projected GCC-related increases in surface water temper-
ature and the altered patterns of precipitation are predicted to
exacerbate eutrophication due to greater release and runoff of
nutrients to water bodies as diverse as Chesapeake Bay (Najjar
et al. 2010) and Lake Champlain (Lake Champlain Basin
Program 2012). Howarth et al. (2006) projected that riverine
loadings of N to northeastern US estuaries will increase in
response to GCC-driven higher precipitation and discharge,
primarily due to decreases in denitrification in riparian

wetlands and low-order streams. They projected that N fluxes
from the Susquehanna River to Chesapeake Bay by 2095 may
be 16% to 65% greater than in the 1988 to 1993 base period.
Using the Howarth et al. (2006) forecasts and the IPCC
(2007)-based predictions of increased water temperature,
Prasad et al. (2011) calculated that the volume of anoxic
(<0.2mg/L DO) water in the Chesapeake Bay could grow by
3% to 17% by 2030 and 16% to 65% by 2095.

The multiple and interacting stressors leading to eutrophi-
cation, HABs, and hypoxia in coastal waters are illustrated in
Figure 3 (Rabelais et al. 2014).Here, “anthropogenic activities”
include nutrients released from agriculture, wastewater treat-
ment plants, and nonpoint source runoff; and changes in
hydrology due to agriculture and urbanization. Positive (þ)
interactions designate worsening conditions related to algal
blooms and hypoxia, and negative (–) interactions designate
fewer algal blooms and lessening of hypoxia symptoms. Thus,
both GCC and non-GCC related stressors can change the
extent and severity of hypoxia and HABs.

A major GCC-related concern is the predicted change in
composition and distribution of phytoplankton populations,
including the greater presence of toxin producing species.
These toxins, if ingested, can poison shellfish, fish, wildlife,
domestic animals, and humans (Carmichael 1994; Codd
1995). The algal species in estuaries and oceans releasing
these toxins include dinoflagellates, diatoms, cyanobacteria,
and raphidophytes. Among these, the cyanobacteria are
considered to have a competitive edge over many other algae
under projected future climate conditions (e.g., warmer
temperatures, increased stratification) and thus are predicted
to become more dominant (Carey et al. 2012; O’Neil et al.
2012). Anticipated changes in algal composition and produc-
tivity resulting from changing anthropogenic stressors, greater
eutrophication, and GCC would also influence existing
algal predator-prey relationships (Balayla et al. 2010; Winder
and Schindler 2004). Changing environmental and biotic
relationships associated with greater eutrophication are
also projected to favor development of sporadic or frequent
blooms by indigenous or invasive species in estuarine and
freshwater habitats (Paerl and Huisman 2009; Lürling
et al. 2013).

There is evidence that HABs appear to be an expanding
problem within several northeast estuaries that may be
exacerbated by GCC. For the Chesapeake Bay, there is a
long-term trend of increased phytoplankton biomass and
abundance, including the presence of 37 HAB taxa from the
Bay and tidal tributaries (Marshall et al. 2009). Althoughmany
bloom producing algae do not produce toxins, the aftermath of
any large algal bloom may include cell decomposition that is
often accompanied by hypoxia and major fish kills. Among
potentially harmful bloom producers in the Bay are the
dinoflagellates, Cochlodinium polykrikoides and Alexandrium
monilatum. The former has expanded its range and bloom
development in lower Chesapeake Bay over the past several
decades, and the latter is an invasive species that produced
modest reoccurring blooms in the Bay, and the James and York
Rivers in Virginia since 2007 (Marshall and Egerton 2009a
2009b). Another dinoflagellate associated with frequent
bloom development in Maryland and Virginia estuaries in
the past decade is Karlodinium veneficum, a known fish-killing
species (Goshorn et al. 2004; Marshall and Egerton 2009a). In
New England waters, blooms of C. polykrikoides (Gobler et al.
2008) and the pelagophyte Aureococcus amophagefferens

Climate Change, Contaminants, and Nutrients in the Northeast—Integr Environ Assess Manag 11, 2015 361



(Gobler and Sunda 2012) have been documented in relation to
nutrient loading.
Lakes within the NA LCC region will also be affected by

climate-related factors (e.g., increasing water temperatures,
nutrient enrichment, lengthened growing season, and strat-
ification) that affect algal populations (Carey et al. 2012).
More frequent outbreaks of HABswere identified as a threat to
Lake Champlain (Stager and Thill 2010). Because many
reservoirs in the NA LCC region were built decades ago, they
are passing into advanced trophic stages that favor HAB
development. In a recent survey of 46 Virginia lakes and
reservoirs, HAB cyanobacteria, represented by Microcystis
aeruginosa, Aphanizomenon flos-aquae, Anabaena spiroides,
Anabaena circinalis, Limnothrix redekei, and Cylindrospermop-
sis raciborskii were present (Marshall 2013). At least one
of these HAB species was observed in 27 of the lakes
surveyed. Human health effects associated with ingestion
of Microcystis aeruginosa cyanotoxins include hepatic and
gastro-intestinal illness, and death (Kuiper-Goodman et al.
1999).
Recent autumnal die-offs of hundreds of migratory birds in

Chesapeake Bay (2001, 2004, and 2005) appear to be linked to
HABs. Themost prominent eventswere at the Paul S. Sarbanes
Ecosystem Restoration Project at Poplar Island (PSSERPPI)
near brackish impoundments. Dead and dying great blue
herons (Ardea herodias) were observed and 9 of 22 specimens
sent for analysis had detectable quantities of microcystins in
the liver (B. Rattner, USGS, personal communication).
Necropsies revealed steatitis (excessive abdominal deposits
of waxy yellow fat); one of several hypotheses suggests that this
condition results from exposure to microcystins in water or
prey (Falconer 2005; Armado and Monserrat 2010). In 2012,
over 770 sick or dead birds (plus several muskrats, Ondatra

zibethicus) were found at PSSERPPI due to exposure to avian
botulism and/or a microcystin-dominated HAB. Murphy et al.
(2000) suggested that avian botulism can be triggered by
HABs. Pathological analysis from the 2012 outbreak confirmed
avian botulism in 6 of 17 birds; gut and liver samples from 14
birds, and 1 muskrat had microcystin concentrations (gut–50
to 1500ppb; liver–79 to 6640 ppb) equal to or higher
than those in other US HAB-associated bird and mammalian
die-offs (L. Murphy, University of Pennsylvania, personal
communication).
Eutrophication-driven hypoxia has increased in the world’s

coastal waters such that the number of anthropogenic anoxia
sites grew from 195 in 1995 to over 400 in 2008 (Diaz and
Rosenberg 2008; Rabalais et al. 2010). From 2000 through
2009, hypoxia was observed in 26% ofNorthAtlantic estuaries
(including Great Bay, Narragansett Bay, and Long Island
Sound) and 42% of mid-Atlantic estuaries (Chesapeake Bay,
and coastal waters of Delaware, New Jersey, and New York)
(Committee on Environment and Natural Resources 2010).
Many GCC-driven processes are likely to increase the extent
and magnitude of coastal hypoxia (Figure 3) (Rabelais et al.
2010). In the Chesapeake Bay, greater stratification may result
from the sea level rise-associated increased salinity of bottom
waters (Kemp et al. 2009). Hypoxia-related mortality of fish,
shellfish, and benthic macroinvertebrates would be expected
to occur more often, because higher water temperatures have
been linked to greater metabolic rates and O2 requirements
(Breitburg 2002; Boesch et al. 2007). In addition to kills from
acutely lethal conditions, chronic exposure to low and
fluctuating O2 concentrations impair reproduction, immune
responses, and growth of fish and invertebrates (Breitburg
2002). Concerns were expressed for Lake Champlain, where
Stager and Thill (2010) projected that prolonged thermal

Figure 3. Potential physical and hydrological changes resulting from climate change and their interaction with current and future human activities. The dashed
lines represent negative feedback to the system. (Reprinted from Rabalais et al. (2014), with permission).
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stratification from increased surface water temperature would
lead to greater deep-water hypoxia.

Laboratory studies documented that chronic exposure to
hypoxia contributes to reproductive impairment in fish (Wu
et al. 2003). Chronic exposure of carp (Cyprinus carpio) to
1 ppm DO was associated with lower serum estradiol and
testosterone concentrations, slower gonadal development, and
diminished fertilization success, hatching rate, and larval
survival. In field studies in Florida, young-of-the-year Atlantic
croaker (Micropogonias undulatus) from hypoxic sites had
impaired ovarian and testicular growth and lower androgens
compared to those from normoxic sites (Thomas et al. 2007).
Although published field studies in the NA LCC region could
not be identified, similar effects may be occurring. Other
concerns are that hypoxiamay exacerbate the toxicity of PAHs
in developing fish (an example of CITS) and that PCB
exposure may hinder the ability of fish to respond to hypoxia
(TICS) (Hooper et al. 2013).

TAXA CASE STUDIES
Here, we assess both direct GCC effects and GCC-

contaminant/nutrient interactive effects on amphibians and
mussels as examples of sensitive taxa. In addition to the 3
stressors discussed above, we include examples of interactive
effects of GCC with pesticides and ionic pollutants, some of
which may be associated with application of road salt.

Amphibians

Amphibian population declines and species extinctions are
critical global issues. The major known causes are habitat loss,
overexploitation, pollution, invasive species, and diseases such
as chytridiomycosis (Stuart et al. 2004; Wake and Vredenburg
2008). Hoffman et al. (2010) reported that 41% of the world’s
amphibian species categorized on the International Union for
the Conservation of Nature (IUCN) Red List are listed as
threatened with extinction, the highest percentage of all
vertebrate taxa. Amphibian occupancy rates in US habitats
were surveyed from 2002 through 2011 (Adams et al. 2013),
and decreases in both rare and common species were noted.
Species in IUCN categories “near threatened” to “critically
endangered” had mean occupancy rates decreasing at 11.6%
per year, whereas those in “least concern” were decreasing at a
lower but biologically relevant rate of 2.7% per year. There
were no significant differences in the rate of decreases between
regions of theUS. According toAdams et al. (2013),GCCmay
be a contributing factor for the declines in amphibian
occupancy combined with habitat loss, disease, and contam-
inants; effects due to GCC are subtle, however, and difficult to
identify.

Within the northeast United States, several species of
amphibians are of particular concern (NPARC 2010). Among
anurans, 3 species, Carpenter’s frog (Lithobates virgatipes),
Eastern spadefoot (Scaphiopus holbrookii), and mountain
chorus frog (Pseudacris brachyphona) are of special interest
because they are found in more than 75% of the State Wildlife
Action Plans (SWAPs) as species of concern; 4 others are of
high concern because they are listed in 50% to 75% of
the SWAPs. Among 6 species of caudates, the Jefferson
salamander (Ambystoma jeffersonianum) is a species of high
regional responsibility because northeastern states represent
greater than 50% of its US and Canadian distribution. Five
other salamanders are of high concern and 4 of moderate
concern.

Amphibians are of particular interest for GCC impacts
because their permeable skin and complex life cycle make
them vulnerable to changes in temperature and precipitation
that affect their aquatic and terrestrial habitats. Amphibians
are ectothermic and might experience greater perturbations
than endothermic birds and mammals. However, amphibians
can maintain body temperatures within a few degrees via
behavioral thermoregulation (Bicego et al. 2007).

In a recent review, Li et al. (2013) evaluated lethal and
sublethal, direct and indirect, and positive as well as negative
effects of GCC on amphibians. They concluded that there is
little evidence of acute lethal effects, and data are inadequate to
determine whether 3 “universal species responses” to global
warming (e.g., changes in phenology [breeding dates]; shifts in
geographic distributions; and reduced body size) are currently
contributing to amphibian population declines. Li et al. (2013)
stated that review of the interaction between climate and the
prevalence of chytridiomycosis revealed more evidence for a
causal link between temperature variability and the disease
than between mean temperature and the disease.

GCC-contaminant interactions are complex and sometimes
contradictory. For example, in laboratory tests with amphib-
ians, toxicity of the carbamate insecticide carbaryl increased
with water temperature (Boone and Bridges 1999), whereas
there are examples of both greater and lesser toxicity at higher
temperatures with pyrethroids (discussed by Materna et al.
1995). In nature, an additional consideration is the interaction
between toxicity and exposure (Rohr et al. 2011). For
some contaminants (e.g., atrazine) (Rohr and McCoy 2010),
there are nonmonotonic concentration responses (i.e.,
changes in direction of response with changes in contaminant
concentrations). Some studies on atrazine reported that
exposure delayed metamorphosis, whereas others showed
accelerated metamorphosis (Rohr and McCoy 2010). Such
changes in the duration of the larval phase would affect toxic
responses.

The increased seasonal drought and rising temperature
predicted for the northeast US (Horton et al. 2014) may
individually or in concert result in adverse effects on
amphibians. Examples of such GCC-contaminant interactions
are the Rohr and Palmer (2005, 2013) laboratory studies of the
effects of temperature, desiccation, and sublethal atrazine
exposure in streamside salamanders (Ambystoma barbouri),
native to the Midwest United States. Findings indicated that
exposure of larvae to atrazine decreased the adults’ ability to
resist desiccation some 8months later. The species prefers cool
(�22 °C), moist conditions and uses behavioral adaptations
such as huddling and decreased activity to survive warmer,
dryer conditions. Despite these adaptations, there was loss of
mass and greater mortality in salamanders exposed to 27 °C, a
common summer temperature within their range (Rohr and
Palmer 2013). Exposure to atrazine shortened time to death.
Thus, behavioral adaptations did not fully compensate for
exposure to prolonged adverse environmental conditions and
atrazine exposure worsened the effects.

Salamanders could be negatively affected in the NA LCC
region by GCC-related altered flow patterns of low-order
streams and the hydrology of vernal wetlands. These sites tend
to dry earlier than ponds favored by many anurans. An
alternative possibility to GCC-induced adverse effects, how-
ever, is that increasing temperatures and nutrient loading may
result in greater species richness in small temperate water
bodies (Rosset et al. 2010).
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The current and future use of fertilizers and pesticides
within the NA LCC region will be affected by economics,
environmental regulations, and changes in the types and
locations of farms. Warmer temperatures would result in
longer growing seasons, differences in types of crops planted or
livestock raised, increased use of groundwater, and changes in
the quantity and types of fertilizers and pesticides applied
(Wolfe et al. 2008). An additional concern is the interaction
between nitrogenous compounds and pesticides. For example,
Orton et al. (2006) reported that changes in sex ratios (favoring
females) in northern leopard frogs (L. pipiens) were more
marked in response to combined exposure to atrazine and
nitrates than to these chemicals alone. At present, the net
effect of these interacting factors cannot be predicted.
Two field studies addressed possible GCC-driven changes in

the abundance of amphibians within the NA LCC region.
Gibbs et al. (2005) compared population changes among 5
species of anurans in New York State between 1973 to 1980
and 2001 to 2002. They identified a net loss of roadside
habitats, such as ditches, but no differences in population
status among those habitats that still existed. At the local level,
population declines were associated with acid deposition,
urban development, forest cover, and agriculture. Although
mean ambient temperatures in 2001 to 2002 were 0.26 °C
warmer than in 1973 to 1980, the difference was not
statistically significant. Breeding phenologies for 4 amphibian
species were slightly advanced in 2001 to 2002 compared to
1973 to 1980. Whereas these changes might be ascribed to
early evidence of GCC, Gibbs et al. (2005) did not consider
climate to be a critical factor. Rather, they suggested that
reductions in the amount of roadside habitat accounted for the
decline in amphibian populations. Lowe (2012) found that
populations of the stream salamander, Gyrinophilus porphyr-
iticus, in New Hampshire decreased between 1999 and 2010.
Based on linear regression, Lowe (2012) determined that the
abundance of adults was negatively related to the amount of
annual rainfall, which is predicted to increase in the Northeast
(Hayhoe et al. 2007). Abundance was not significantly related
to mean annual temperature. Lowe (2012) hypothesized that
metamorphs may not be able to use flood-avoidance strategies
used by larvae and adults, resulting in increased mortality.

Freshwater mussels

Freshwater mussel life history traits, such as dependency on
specific host fish, environmentally sensitive larval and juvenile
life stages, and their filter-feeding, benthic-dwelling biology,
make mussels inherently vulnerable to natural and anthro-
pogenic stressors (Neves et al. 1997; Strayer et al. 2004; Haag
2012). According to Williams et al. (1993) 213 (72%) of the
297 species known in US waters are federal- or state-listed as
endangered, threatened, or of special concern, making mussels
one of the most imperiled animal groups in the country.
The river systems of the NA LCC region support 32 species

of mussels. Included are 2 US-listed endangered species, dwarf
wedgemussel (Alasmidonta heterodon) and James spinymussel
(Pleurobema collina), and 1 candidate species, Atlantic pigtoe
(Fusconaia masoni). The Connecticut River watershed in New
England supports the largest known populations of the dwarf
wedgemussel. The Penobscot River in Maine and rivers
northward to New Brunswick, Canada and the Gulf of Saint
Lawrence, support important populations of cool-cold water
adapted mussel species such as the eastern pearlshell
(Margaritifera margaritifera). This species is listed as critically

imperiled in Pennsylvania (Pennsylvania Fish and Boat
Commission 2011). The dwarf wedgemussel is listed as
extirpated from its only recorded Canadian location within
the Petitcodiac River drainage of New Brunswick. Two other
species from Nova Scotia and New Brunswick, brook floater
(Alasmidonta varicosa) and yellow lampmussel (Lampsilis
cariosa), are listed by the provincial governments as species of
special concern (New Brunswick 2014 Nova Scotia 2014).
Both species are listed as threatened by Maine Department of
Inland Fisheries and Wildlife (2014).
Stressors suspected as contributing to declines and extinc-

tions of freshwater mussels occur at local, regional, and global
scales. Locally, mussels suffer from habitat alteration (e.g.,
riparian clearing) that results in greater inputs of fine
sediments, contaminants, and nutrients, and the impacts of
invasive species. Regional scale stressors include river frag-
mentation and altered flow regimes, including dams that
restrict movement of host fish. At the global scale, mussels
suffer from direct and indirect GCC effects, including
increased frequency of large floods and severe droughts,
changes in stream and lake temperatures, losses of host fish
populations, and increased salinization from shifts in human
activities (Hastie et al. 2003; Galbraith et al. 2010).
Within the NA LCC region, GCC may affect freshwater

mussel populations directly by altering stream temperatures or
indirectly through increased loading of sediments, contami-
nants, and nutrients released from watersheds and stream
banks during more frequent heavy storms. These alterations to
aquatic systems could affect mussel host fishes, causing
changes in their abundance and distribution. Kaushal et al.
(2010) studied changes in river and stream temperatures by
analyzing historical data in 40 rivers and streams across the
United States. They reported significant temperature elevation
in 20 rivers and streams (decreases in only 2) and concluded
that the greatest increases were near urban areas in the mid-
Atlantic states. Both climate change and urbanization, through
increases in impervious surface area and loss of riparian areas
and canopy cover contribute to the temperature responses.
Laboratory studies demonstrated that juvenile and adult
mussels in US streams had reduced growth and high mortality
at water temperatures of greater than or equal to 32 to 34 °C
(Pandolfo et al. 2010; Carey et al. 2013). In laboratory tests
with 3 species native to the Midwest and southeastern United
States, lethal temperatures affecting 50% of the test group
ranged from 25.3 to 30.3 °C (Ganser et al. 2013). Thus, some
freshwater mussel species may already be living close to their
upper thermal tolerances (Pandolfo et al. 2010), and recent
rises in stream temperatures have already resulted in shifting
species abundance toward thosewith greater thermal tolerance
(Galbraith et al. 2010).
Mussels are particularly sensitive to ammonia (Strayer and

Malcom 2012; USEPA 2013b). Natural sources of ammonia in
the environment include excretion of nitrogenous wastes by
animals, decay of animal and plant matter, and fixation by
bacteria. Anthropogenic sources includewastewater treatment
plant effluent, releases from septic systems, runoff of nitro-
genous fertilizers from crops, runoff of animal wastes from
feedlots and grazing pastures, and industrial processes such as
production of cleaning products and fertilizers. The USEPA
(2013b) ammonia criteria for freshwater was recently lowered
fromprevious values, based on new data that indicated that the
7 most sensitive genera were freshwater mussels. Ammonia is
more harmful to juvenile and adult mussels in the summer,
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when water levels are low and temperatures high. Elevated
temperatures documented and predicted with GCC result in a
greater fraction of ammonia existing in the toxic un-ionized
form (NH3) (USEPA 2013b). Furthermore, ammonia can
reach higher concentrations in interstitial porewater of
stream substrates compared with overlying water (Frazier
et al. 1996). Strayer (2013) stated that concentrations of
interstitial NH3 may rise when DO is low and loadings of
reactive N are high.

Strayer and Malcom (2012) concluded that NH3 was the
primary cause of recruitment failure of the eastern elliptio
(Elliptio complanata) in southeastern New York. They tested
whether interstitial NH3 concentrations differed between
sites with recruiting populations versus those with non-
recruiting populations. They also tested whether sites differed
with respect to fine sediments, interstitial DO, crayfish
densities, or presence of American eels (Anguilla rostrata), a
host species. A relationship with interstitial NH3 concen-
trationswas found; a threshold of 0.2mg/L separated recruiting
from failing populations. The authors postulated that NH3

poses a threat to manymussel species over broad regions of the
world.

According to Kaushal et al. (2005) baseline stream salinities
are increasing within areas of the NA LCC toward thresholds
beyond which ecological communities and ecosystem func-
tions might not recover. Stream salinization refers to an
increase in the concentration of total dissolved solids in water
and can be detected by increases in ionic pollutants that are
acutely toxic to freshwater mussels such as Cl�, Naþ, Kþ,
Mnþ2, and SO4

� (Echols et al. 2009; Gillis 2011). In recent
decades, increasing percentages of land use as roads and other
impervious surfaces has been associatedwith sharp increases in
concentrations of Naþ and Cl� in aquatic systems, primarily
due to the use of road salt (Kaushal et al. 2005; Environment
Canada 2012). Cl� concentrations in surface waters were
elevated substantial distances from roadways due to gradual
releases from groundwater, leading to widespread adverse
impacts on water quality.

Many parts of Canada have experienced changes to their
winter climate over the past decade (Environment Canada
2012). These changes include more freeze-thaw cycles, more
frequent and larger storms, freezing rain, and longer periods
when temperatures arewithin theworking temperature of salt.
Such changes can lead to more winter maintenance activities
including greater road salt application. However, Mills and
Andrey (2002) stated that empirical relationships between
temperature and historic rates of salt use suggest that a
warming of 3 to 4 °C could decrease salt and sand use by 20% to
70%. An additional impact of GCC is the increased number
and duration of droughts resulting in reduced flow and higher
Cl� concentrations. Clearly, GCC is one of many factors
potentially affecting stream salinization, but there is uncer-
tainty regarding the magnitude and direction of impact.

Hence, a future with greater incidence of drought and
accompanying higher temperatures, low flows, and salt and
ammonia toxicity in streams may prove stressful for many
mussel species within the NA LCC region. For example, the
preferred habitat of the dwarf wedgemussel is clear, cool, and
relatively small streams with abundant sand and small gravel
substrate (Michaelson and Neves 1995). Such habitats are
vulnerable to excessive ammonia and salt inputs from
agriculture, wastewater, road runoff, and shifts in hydrology,
and to higher temperatures.

SUMMARY AND RESEARCH RECOMMENDATIONS
For each case study, we summarize key findings and

highlight areas requiring additional research. Based on the
overarching concern for natural resources in the NA LCC and
the need for approaches that provide utility for land and
resource managers, we suggest research topics based on the
following criteria: 1) whether the results will enhance our
understanding of the impacts of these GCC-related stressors
on natural resources, especially species of concern; 2) whether
the findings can be applied to lead to a reduction of threats
driving population losses of threatened and endangered
species, certain interjurisdictional fishes, migratory birds,
amphibians, and freshwater mussels; and 3) whether the
results will reduce uncertainty related to prudent natural
resource management.

Stressors

The NA LCC region includes ecosystems sensitive to Hg
deposition. Several bird species of high conservation status
haveHg body burdens associatedwith reduced nesting success.
We recommend research on the interactive effects of GCC
(including changing requirements for water level management
of impoundments) on generation and bioavailability of MeHg,
and the effects of GCC-driven shifts in species distributions on
MeHg exposure.

Freshwater acidification has adversely affected terrestrial
and aquatic ecosystems in high elevation areas of New York
(Adirondacks), New England, and the Maritimes that are
slowly recovering due to decreased emissions of N and sulfur
oxides. Research is needed on how GCC will affect that
recovery. A byproduct of decreases in acid deposition is
enhanced mobilization of dissolved organic matter. Increases
in dissolved organic carbon coupled with GCC may alter
endpoints of acidification recovery through shifts in biological
communities and also affect Hg dynamics (see above).
Research is needed to understand how GCC concurrent
with decreased acid deposition will alter the structure and
function of acid-sensitive watersheds and surface waters.

Eutrophication in many estuaries in the NA LCC region is
projected to increase due to greater runoff from watersheds
receiving heavier storms and less denitrification in riparian
wetlands. Hypoxia in the Chesapeake Bay and other estuaries
may be exacerbated by increased stratification. Elevated water
temperature favors algal species that produce HABs associated
with bird die-offs. Research is needed on the effects of GCCon
HABs and avian disease, and how more severe and extensive
hypoxia events will affect fish and shellfish populations.

Information should be compiled for other contaminants
exhibiting widespread exposure and known toxicity within
various NA LCC ecoregions. A priority would be PCBs and
legacy organochlorine contaminants that are risk drivers for
fish consumption advisories throughout the region. Additional
information should be gathered on GCC-contaminant inter-
actions of current use pesticides, PAHs, and endocrine
disrupting compounds.

Taxa

Amphibian populations appear to be declining and several
northeastern species are of special concern. Information is
needed on 1) thermal tolerance and moisture needs of species
of concern; 2) effects of multiple stressors (temperature,
desiccation, contaminants, nutrients); and 3) the feasibility of
approaches to mitigate GCC-related stressors of increased
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temperature and seasonal drought, such as manipulation of
water levels and providing shelter and canopy cover.
GCC may affect freshwater mussel populations via altered

stream temperatures or through increased sediment, contam-
inant, and nutrient loading from more frequent heavy storms.
Freshwater mussels are extremely sensitive to un-ionized
ammonia that is more toxic at higher temperatures. The extent
to which GCC will exacerbate exposure of mussels to un-
ionized ammonia, greater runoff, and reduced porewater DO
is unknown. We recommend research to identify mussel
species and populations that are vulnerable and those that are
resilient to rising stream temperatures, hydrologic shifts, and
ionic pollutants, all of which are influenced by GCC.
Scientists should continue to gather information on direct

and indirect GCC-related threats to plants, invertebrates,
fishes, birds, and mammals identified as priority species by the
NA LCC (USFWS 2009) and by other conservation partner-
ships. This case study approach is applicable to agencies and
NGOs working in other geographic areas, and is especially
relevant for the other 21 LCCs across North America.
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