181 research outputs found

    Subsidence and carbon loss in drained tropical peatlands

    Get PDF
    Biogeosciences931053-107

    Відомості про авторів

    Get PDF
    Udder cleft dermatitis (UCD) is a well-known disorder in dairy cows. Veterinary literature about this subject, however, is scarce. The objectives of this study were to define a clinical scoring system for UCD, estimate the within-herd prevalence of UCD, and identify potential risk factors of UCD at cow and herd level. On 20 randomly selected dairy farms in the Netherlands, each lactating cow was photographed from a ventral, lateral, and caudal position. A scoring system with 6 categories of severity of UCD was proposed based on the ventral photographs. Cow measures such as udder width and depth, and front quarter attachment were determined from the lateral and caudal photographs. A questionnaire was conducted on each farm during farm visits. Udder cleft dermatitis, defined as a score 3 or higher, was detected in 5.2% of the 948 cows involved in this study. Within-herd prevalences of UCD ranged between 0 and 15% and UCD was found in 16 (80%) of the participating farms. Cows with a deep udder (relative to the hock), large front quarters, and a small angle between udder and abdominal wall were more likely to develop UCD. Production level and use of a footbath were identified as being positively associated with herd-level UCD prevalence. Herd size and average bulk milk somatic cell count did not seem to be associated with UCD prevalence. Because of the small herd sample size, no firm conclusions were drawn on herd-level risk factors. However, results from this study can be used in designing a future longitudinal UCD study. The prevalences of UCD found in the present study illustrate the current UCD situation in the Netherlands. Our results demonstrate that multiple potential risk factors of UCD could be identified at both the cow and herd level

    Prognostic and predictive value of human equilibrative nucleoside transporter 1 (hENT1) in extrahepatic cholangiocarcinoma:a translational study

    Get PDF
    Introduction: Effective (neo) adjuvant chemotherapy for cholangiocarcinoma is lacking due to chemoresistance and the absence of predictive biomarkers. Human equilibrative nucleoside transporter 1 (hENT1) has been described as a potential prognostic and predictive biomarker. In this study, the potential of rabbit-derived (SP120) and murine-derived (10D7G2) antibodies to detect hENT1 expression was compared in tissue samples of patients with extrahepatic cholangiocarcinoma (ECC), and the predictive value of hENT1 was investigated in three ECC cell lines.Methods: Tissues of 71 chemonaïve patients with histological confirmation of ECC were selected and stained with SP120 or 10D7G2 to assess the inter-observer variability for both antibodies and the correlation with overall survival. Concomitantly, gemcitabine sensitivity after hENT1 knockdown was assessed in the ECC cell lines EGI-1, TFK-1, and SK-ChA-1 using sulforhodamine B assays.Results: Scoring immunohistochemistry for hENT1 expression with the use of SP120 antibody resulted in the highest interobserver agreement but did not show a prognostic role of hENT1. However, 10D7G2 showed a prognostic role for hENT1, and a potential predictive role for gemcitabine sensitivity in hENT1 in SK-ChA-1 and TFK-1 cells was found.Discussion: These findings prompt further studies for both preclinical validation of the role of hENT1 and histochemical standardization in cholangiocarcinoma patients treated with gemcitabine-based chemotherapy

    Global variation in the cost of increasing ecosystem carbon

    Get PDF
    Slowing the reduction, or increasing the accumulation, of organic carbon stored in biomass and soils has been suggested as a potentially rapid and cost-effective method to reduce the rate of atmospheric carbon increase(1). The costs of mitigating climate change by increasing ecosystem carbon relative to the baseline or business-as-usual scenario has been quantified in numerous studies, but results have been contradictory, as both methodological issues and substance differences cause variability(2). Here we show, based on 77 standardized face-to-face interviews of local experts with the best possible knowledge of local land-use economics and sociopolitical context in ten landscapes around the globe, that the estimated cost of increasing ecosystem carbon varied vastly and was perceived to be 16-27 times cheaper in two Indonesian landscapes dominated by peatlands compared with the average of the eight other landscapes. Hence, if reducing emissions from deforestation and forest degradation (REDD+) and other land-use mitigation efforts are to be distributed evenly across forested countries, for example, for the sake of international equity, their overall effectiveness would be dramatically lower than for a cost-minimizing distribution.Peer reviewe

    Age, extent and carbon storage of the central Congo Basin peatland complex

    Get PDF
    Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 10(15) grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by 36 per cent, to 104.7 petagrams of carbon (minimum estimate of 69.6 petagrams of carbon; maximum estimate of 129.8 petagrams of carbon). This stored carbon is vulnerable to land-use change and any future reduction in precipitation

    Congo Basin peatlands: threats and conservation priorities

    Get PDF
    The recent publication of the first spatially explicit map of peatlands in the Cuvette Centrale, central Congo Basin, reveals it to be the most extensive tropical peatland complex, at ca. 145,500 km2. With an estimated 30.6 Pg of carbon stored in these peatlands, there are now questions about whether these carbon stocks are under threat and, if so, what can be done to protect them. Here, we analyse the potential threats to Congo Basin peat carbon stocks and identify knowledge gaps in relation to these threats, and to how the peatland systems might respond. Climate change emerges as a particularly pressing concern, given its potential to destabilise carbon stocks across the whole area. Socio-economic developments are increasing across central Africa and, whilst much of the peatland area is protected on paper by some form of conservation designation, the potential exists for hydrocarbon exploration, logging, plantations and other forms of disturbance to significantly damage the peatland ecosystems. The low level of human intervention at present suggests that the opportunity still exists to protect the peatlands in a largely intact state, possibly drawing on climate change mitigation funding, which can be used not only to protect the peat carbon pool but also to improve the livelihoods of people living in and around these peatlands

    First description of a fossil chamaeleonid from Greece and its relevance for the European biogeographic history of the group

    Get PDF
    The fossil record of Chamaeleonidae is very scarce and any new specimen is therefore considered important for our understanding of the evolutionary and biogeographic history of the group. New specimens from the early Miocene of Aliveri (Evia Island), Greece constitute the only fossils of these lizards from southeastern Europe. Skull roofing material is tentatively attributed to the Czech species Chamaeleo cf. andrusovi, revealing a range extension for this taxon, whereas tooth-bearing elements are described as indeterminate chamaeleonids. The Aliveri fossils rank well among the oldest known reptiles from Greece, provide evidence for the dispersal routes of chameleons out of Africa towards the European continent and, additionally, imply strong affinities with coeval chamaeleonids from Central Europe
    corecore