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General theory for spontaneous emission in active dielectric microstructures:
Example of a fiber amplifier
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A model for spontaneous emission in active dielectric microstructures is given in terms of the classical
electric field Green’s tensor and the quantum-mechanical operators for the generating currents. A formalism is
given for calculating the Green’s tensor, which does not rely on the existence of a complete power orthogonal
set of electromagnetic modes, and the formalism may therefore be applied to microstructures with gain and/or
absorption. The Green’s tensor is calculated for an optical fiber amplifier, and the spontaneous emission in fiber
amplifiers is studied with respect to the position, transition frequency, and vector orientation of a spatially
localized current source. Radiation patterns are studied using a Poynting vector approach taking into account
amplification or absorption from an active medium in the fiber.
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I. INTRODUCTION

The spontaneous emission properties of an emitter
changes when it is placed in a small cavity@1#, between
mirrors @2,3#, or in a medium with spatially varying dielec-
tric constant@4–8#. The general explanation is that a cavity
or a varying dielectric constant will modify the strength and
distribution of electromagnetic modes with which an emitter
can interact, resulting indirectly in altered spontaneous emis-
sion properties. The effect was first noticed by Purcell in
1946 @1# and has since been demonstrated in a number of
experiments on Rydberg atoms, quantum dots, and rare-earth
materials@9–18#. One of the perspectives of the effect is that
spontaneous emission of an emitter can, to some extent, be
controlled and even engineered by tailoring the surrounding
structure on a transition wavelength scale.

The standard approach to calculation of the rate of spon-
taneous emission for an atom placed in an empty metallic
cavity or in free space, is to expand the radiation field in
power orthogonal modes normalized to one quantum of en-
ergy and use the Fermi golden rule. If the emitter is embed-
ded in a dielectric material, the coupling between matter and
the radiation field requires a QED formulation of Maxwell’s
equations for the dielectric medium in order to calculate the
rate of spontaneous emission from the emitter. For passive
media without gain or absorption, it is possible, as in free
space, to expand the radiation field in power orthogonal
modes and to use the expansion as a basis for quantization.
This is, for example, the method for calculating spontaneous
emission rates in photonic band-gap structures@19–21#,
where the local density of electromagnetic modes may be
strongly modified and even zero in certain frequency ranges
due to a periodically varying dielectric constant@21–23#.

If the material is active and has loss and/or gain, the so-
lutions to Maxwell’s equations cannot be expanded in power
orthogonal modes, and the concept of modes becomes more
subtle. In that case, it is convenient to use the electromag-
netic fields and generating currents as primary observables
represented by operators that are defined by their commuta-
tion relations. The relation between field and current opera-
tors is given by a classical electric-field Green’s tensor. This
allows a calculation of spontaneous emission even for ex-
tended and dynamically varying structures as, for example, a
modulated laser diode. The studies of QED for dielectric
materials have essentially followed two parallel approaches
in the physics and the quantum electronics communities, re-
spectively. The physics approach@24–37# has focused on the
material aspects of QED for dielectrics such as the influence
of absorption, dispersion, and inhomogeneities.

The quantum electronics approach~see, for example, the
papers@38–49# and references in Ref.@44#!, has been driven
by studies of spontaneous emission in optical waveguides
and has explored the effect of the absence of a complete set
of power orthogonal modes. In fact, the phenomenon of ex-
cess noise in guided modes introduced by Petermann@38# is,
as pointed out first by Haus and Kawakami@39#, related to
the nonexistence of a complete set of power orthogonal elec-
tromagnetic modes. The analyses of spontaneous emission in
active dielectric waveguides in Refs.@38–49# are based on
the scalar wave equation for the electromagnetic field. The
scalar methods give the rate of spontaneous emission into
guided modes, but they do not give the total rate of sponta-
neous emission. This requires taking into account the cou-
pling to the complete radiation field and not only the guided
modes.

In this paper we extend the analysis of spontaneous emis-
sion, based on the approximate scalar wave equation, to a
full vectorial approach valid for general active dielectric mi-
crostructures. The total rate of spontaneous emission from an
emitter in an active dielectric medium can be expressed in
terms of the classical Green’s tensor, or to be more precise,

*FAX: 145 45 93 65 81. Email address: ts@com.dtu.dk
†FAX: 145 45 93 65 81. Email address: bt@com.dtu.dk

PHYSICAL REVIEW A, VOLUME 64, 033812

1050-2947/2001/64~3!/033812~14!/$20.00 ©2001 The American Physical Society64 033812-1



the double-transverse part of the tensor. We present a general
method for calculating this tensor from complete sets of bior-
thogonal modes for the vector wave equation. The vectorial
nature of the formalism allows calculation of spontaneous
emission depending on position, transition frequency, and
polarization of the emitter in a dielectric microstructure with
loss or gain. Vectorial Green’s tensor methods for decay of
excited molecules have previously been given for the case of
homogeneous absorbing dielectric media@32#, for an absorb-
ing dielectric surface@35#, and in a series of papers by
Tomaŝand Lenac for absorbing layered structures@50–52#.

We exemplify the method by analyzing spontaneous
emission in an optical fiber. The step-index fiber is suffi-
ciently simple to allow analytical solutions for the Green’s
function for both passive and active fibers; the solutions il-
lustrate some subtle issues related to the singularity of the
Green’s function that are not easily studied by purely nu-
merical methods. We take into account both position and
vector orientation of spatially localized generating currents.
Our method allows taking spontaneous emission into account
into the radiation modes of the electromagnetic field, and
thereby the total rate of spontaneous emission from an emit-
ter embedded in, for example, an active waveguide, may be
calculated. Spontaneous emission into radiation modes has
previously been considered for passive multilayer dielectric
structures@12,53–56#, and decay in the presence of passive
dielectric cylindrical structures has been investigated in Refs.
@57–59#. In the analysis of active fibers, the Green’s tensor is
calculated exemplifying the general formalism for calculat-
ing Green’s tensors for the vector case. Another example of
calculating Green’s tensors for active layered structures is
given in Ref.@50#.

The paper is organized in the following way. In Sec. II the
model for spontaneous emission in active dielectric micro-
structures is given. The general principle for obtaining the
electric-field Green’s tensor is given in Sec. III. Using this
principle the transverse electric-field Green’s tensor is de-
rived for the case of active optical fibers in Sec. IV. Position
dependence and transition-frequency dependence of sponta-
neous emission for the passive fiber is given in Sec. V. Ra-
diation patterns obtained using a Poynting vector approach
for the active fiber are presented in Sec. VI. Our conclusion
is given in Sec. VII.

II. MODEL FOR SPONTANEOUS EMISSION

In this section we present a general Green’s tensor model
for calculating the rate of spontaneous emission in a material
with a position dependent dielectric constant«(r ). The
model allows« to be complex and thus to represent materials
with absorption or gain. For simplicity, we treat«(r ) as a
scalar. There is no problem in principle to let«(r ) represent
a tensor, and thus to include the case of birefringent materi-
als, but the notation will of course be less transparent. Our
model does require a complete set of biorthogonal modes.

The spontaneous emission in the material may be consid-
ered as being generated by a distribution of spontaneous cur-
rents. The positive frequency part of the current density is
represented by an operatorĵ (r ,t) in the Heisenberg picture.

The real current density is thereforeĵ1 ĵ†, where (†) denotes
Hermitian conjugation, and where

ĵ ~r ,t !5
1

2pE0

`

ĵ ~r ;v!e2 ivtdv, ~1!

the integration being only over positive angular frequencies
v.

The current density is the sum of two partsĵT(r ,t) and
ĵGL(r ,t) with “• ĵT50 and“3( ĵGL /«)50 @60#. It is actu-
ally only the transverse part of the currentsĵT(r ,t), which
contributes to spontaneous emission; the partĵGL(r ,t) con-
tributes to the nonradiative decay rate@32#. For a homoge-
neous medium with constant«, the componentĵGL is simply
the longitudinal part, but for nonhomogeneous media,ĵGL is
the generalized longitudinal part. Notice, that in splitting the
current intoĵT and ĵGL the transverse part is also affected by
«, when this is nonuniform.

The average rate of energy dissipation, due to spontane-
ous emission, is given in terms of the currentsĵT by

^P&52E ^ ĵT
†~r ,t !•Ê~r ,t !1Ê†~r ,t !• ĵT~r ,t !& d3r , ~2!

where the angled brackets^•••& denote ensemble and time
averaging, andÊ(r ,t) is the positive frequency part of the
electric-field operator. The field is itself generated by the
transverse currents and satisfies the inhomogeneous wave
equation

@2“3“31k0
2 «~r !#Ê~r ;v!52 ivm0ĵT~r ;v! ~3!

in the frequency domain. Herek05v/c is the wave number,
c is the speed of light, andm0 is the permeability, all for
vacuum. The solution to Eq.~3! may be written as

Ê~r ;v!52 ivm0E G~r ,r 8;v!• ĵT~r 8;v! d3r 8 ~4!

in terms of the classical Green’s tensorG(r ,r 8;v). It is de-
fined as a solution to the equation

@2“3“31k0
2«~r !#G~r ,r 8;v!5Id~r2r 8!, ~5!

whered is the Dirac delta function, andI is the unit 333
tensor. We shall only deal with the retarded Green’s tensor,
lim

e→01
G(r ,r 8;v1 i e), which ensures a causal relationship

betweenÊ(r ,t) and ĵT(r ,t).
Insertion of Eq.~4! in Eq. ~2! leads to

^P&52
im0

~2p!2E ^ ĵT
†~r ;v!•$v8G~r ,r 8;v8!

2vG†~r 8,r ;v!%• ĵT~r 8;v8!& d3r d3r 8 dv dv8.

~6!

T. SO”NDERGAARD AND B. TROMBORG PHYSICAL REVIEW A64 033812

033812-2



It is often convenient to drop the restriction that the currents
have to be transverse by instead using the double-transverse
Green’s tensorGT defined by

GT~r ,r 8;v!5E d T
†~r ,r1!•G~r1 ,r2 ;v!•dT~r2 ,r 8!d3r 1d3r 2 .

~7!

The transverse delta functiondT(r ,r 8) is the operator that
projects an arbitrary vector function into its transverse part
@26,61#. The construction ofdT is presented in Appendix B.

The spontaneous currents are assumed to bed correlated
in space and frequency, i.e.,

^ ĵ l
†~r ;v! ĵ m~r 8;v8!&52Dml~r ;v!d~r2r 8!2pd~v2v8!,

~8!

where ĵ l is the l th component of the current densityĵ , and
Dml is the elementml of the diffusion tensorD. The optical
transitions that contribute to the spontaneous emission, and
therefore to the diffusion tensor, will also give a contribution
«sp to the dielectric tensor. The two tensors are related by the
fluctuation-dissipation theorem@44#

D5\v2«0nspIm~«sp!, ~9!

i.e., the diffusion tensor is proportional to the imaginary part
of «sp . The factornsp is the population inversion factor for
the involved quantum states, and«0 is the vacuum permit-
tivity.

The rate of spontaneous emissionG, i.e., the number of
spontaneously emitted photons per unit time, can now be
obtained from the rate of energy dissipation by introducing
Eq. ~8! in Eq. ~6! and dividing the integrand by the photon
energy\v. This results in the following simple expression
for G:

G52
2m0

\2p
ImS E Tr$2D~r ;v!•GT~r ,r ;v!%d3rdv D ,

~10!

where ‘‘Tr’’ indicates the trace of the matrix product. We
will focus on the case where a dipole emitter is localized at
r0, and the transition frequency isv0. The diffusion tensor is
then given by

2D5v0
2mm†d~r2r0!2pd~v2v0!, ~11!

where m is the dipole vector, and the rate of spontaneous
emission becomes@32#

G52
2m0v0

2

\
Im@m†

•GT~r0 ,r0 ;v0!•m#. ~12!

The expression~12! allows us to calculate the rate of spon-
taneous emission from dipoles, even if the dielectric material
is a gain medium at the transition frequencyv0. In that case,
the radiation observed outside the material consists of ampli-
fied spontaneous emission from the dipole as well as ampli-
fied spontaneous emission from the gain medium, and the
spontaneous emission rateG cannot be determined by simply

counting the emitted photons. However, if the dipole radia-
tion is due to different processes than the processes that pro-
vide the gain, it may nevertheless be possible to verify the
expression~12! experimentally. In the following, we present
a theoretical method for calculatingG, and we demonstrate
the method for the example of an optical fiber.

III. CONSTRUCTION OF THE ELECTRIC-FIELD
TRANSVERSE GREEN’S TENSOR

This section concerns the general principles for construc-
tion of the electric-field Green’s tensorG(r ,r 8;v) defined by
Eq. ~5!. Instead of dealing with the wave equation in the
form ~3!, it is convenient to introduce the vector function
@26#

g~r !5A«~r !E~r !, ~13!

and to rewrite the wave equation~3! in terms ofg(r ):

2
1

A«~r !
“3“3

g~r !

A«~r !
1k0

2g~r !52 ivm0

jT~r !

A«~r !
.

~14!

The argumentv has been suppressed for simplicity. We will
first derive the Green’s tensorGg(r ,r 8) for g(r ); by Eq.~13!
the Green’s tensorG(r ,r 8) for the electric field is then ob-
tained from the relation

Gg~r ,r 8!5A«~r !G~r ,r 8!A«~r 8!. ~15!

We define an operatorH acting ong(r ) by writing the left-
hand side of Eq.~14! as Hg. The equation for the Green’s
tensorGg(r ,r 8) may then be written as

HGg~r ,r 8!5Id~r2r 8!. ~16!

The operatorH was introduced by Glauber and Lewenstein
in their theory of quantum electrodynamics of dielectric me-
dia @26#. For passive dielectric media with real«(r ), the
operator is Hermitian, but it is non-Hermitian if«(r ) is com-
plex. The Hermitian conjugateH † is obtained fromH by
replacing«(r ) by its complex conjugate. In both cases we
can assume, that for each set (gn ,ln) of eigensolutions to
Hgn5lngn , there exists a set of eigensolutions (g̃n ,ln* ) to

H †g̃n5ln* g̃n , such that the biorthogonality condition

E @ g̃n~r !#* •gm~r !d3r 5Nndnm ~17!

and the completeness relation

(
n

gn~r !g̃n* ~r 8!

Nn
5Id~r2r 8! ~18!

are satified. Here, the asterisk~* ! denotes complex conjuga-
tion. The eigenfunctiong̃n(r ) is denoted the adjoint ofgn(r ).
The eigensolutionsgn are degenerate, so the assignment of
the adjoint solution is not unique, but it can be chosen such
that Eqs.~17! and ~18! are fulfilled. The actual choice may
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be adapted to the specific structure under consideration, as
we will demonstrate for the example of an optical fiber. The
summation sign in Eq.~18! represents an integration for the
case of a continuum of eigensolutions and a summation for
discrete eigensolutions. Similarly, the symboldnm in Eq. ~17!
represents a Dirac delta function for eigensolutions in the
continuous spectrum of eigenvalues, and a Kronecker delta
function for discrete eigensolutions.

By the completeness relation~18!, the Green’s tensor
Gg(r ,r 8) becomes

Gg~r ,r 8!5(
n

gn~r !g̃n* ~r 8!

Nnln
, ~19!

as can be seen by inserting Eq.~19! in Eq. ~16!. Equation
~15! finally leads to the expression

G~r ,r 8;v!5(
n

En~r !@Ẽn~r 8!#*

Nnln
~20!

for the Green’s tensor for the electric field. The electric field
En5gn /A« is a solution to

2“3“3En1k0
2«~r !En5ln«~r !En , ~21!

and Ẽn5g̃n/A«* . The normalization factorNn is

Nn5E @ g̃n~r !#* •gn~r ! d3r 5E «~r !@Ẽn~r !#* •En~r !d3r .

~22!

The solutions to Eq.~21! must satisfy the equation

k0
2
“•@«~r !En~r !#5ln“•@«~r !En~r !#, ~23!

so we have either

“•@«~r !En~r !#50, ~24!

which describes field solutions in the absence of electric
charges, or else“•@«(r )En(r )#Þ0, and henceln5k0

2. In
the latter case, the eigenvalue problem reduces to

“3“3En~r !50, ~25!

which has solutions of the form

En~r !5“fn~r !, ~26!

where fn(r ) are scalar functions. They have to fulfill the
biorthogonality condition

E «~r !“fn~r !•“@f̃m~r !#* d3r 5Mndnm , ~27!

and this can be achieved by choosing@fn(r ),sn# to be a
complete set of solutions to the eigenvalue problem for the
scalar wave equation

“•@«~r !“fn#5snfn . ~28!

The set@f̃n(r ),sn* # is the corresponding set of adjoint solu-
tions. It follows from Eq.~27! and Eq.~28! that the normal-
ization factorMn is given by

Mn52snE @f̃n~r !#* fn~r !d3r . ~29!

These considerations lead to a Green’s tensorG(r ,r 8;v),
which is the sum of two terms

G5GGT1GL , ~30!

whereGGT is the sum~20! over solutions to Eq.~21! and Eq.
~24!. It is therefore generalized transverse, i.e.,“•(«GGT)
50. The other partGL contains only longitudinal eigenfunc-
tions, i.e.,

GL~r ,r 8;v!5(
n

“fn~r !@“f̃n~r 8!#*

Mnk0
2

. ~31!

Here we note that the field obtained by inserting the Green’s
tensor~30! and any current density into Eq.~4! can always
be split into a generalized transverse part and a purely lon-
gitudinal part. It is then seen using these fields and current
densities in Eq.~3! that the current density must consist of a
purely transverse partjT with “• jT50 generating the gener-
alized transverse field, and a partjGL with “3( jGL /«)50
generating the longitudinal field. We also note, that by choos-
ing (fn ,sn) to be a complete set of eigensolutions to Eq.
~28!, we ensure by construction that a currentj with a lon-
gitudinal component in Eq.~4! will generate an electric field
that satisfies the Coulomb equation“•(«E)52 i“
• j /(v«0).

We shall only be concerned with the double-transverse
Green’s tensor Eq.~7!. Inserting Eq.~30! in Eq. ~7! gives

GT~r ,r 8;v!5(
n

En
T~r !~Ẽn

T@r 8!#*

ln*«~r !@Ẽn~r !#* •En~r !d3r
1dT

†GLdT ,

~32!

where

En
T~r !5E dT

†~r ,r 8!•En~r 8!d3r 8, ~33!

and En are the generalized transverse solutions to Eq.~21!
and Eq.~24!. The transverse delta operatordT is given in
Appendix B. For real«, we haveEn

T5En , dT
†GLdT50 and

henceGT5GGT , but this does not hold for complex«. In the
next section this general approach to the electric-field
double-transverse Green’s tensor is applied to the case of
active optical fibers.

IV. TRANSVERSE GREEN’S TENSOR FOR THE ACTIVE
OPTICAL FIBER

In this section the general principles for the construction
of the electric-field Green’s tensor, given in the previous sec-
tion, is applied to the case of an active optical fiber. The
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details of the calculation is given in the Appendices.
A schematic of the circular step-index optical fiber is

shown in Fig. 1. The structure consists of a circular core
region with refractive indexn1 surrounded by a cladding
region with refractive indexn2. The diameter of the core is
denoted 2a. The extent of the cladding region is assumed to
be infinite. A Cartesian coordinate system (x,y,z) is intro-
duced with the origin in the center of the fiber core. The fiber
is oriented along thez axis, and the position of a point source
is given in cylindrical coordinates by (r,f,z). The sponta-
neous emission depends on both the position and the orien-
tation of the dipole vectorm. In this paper we will consider
spontaneous emission for emitters oriented along thez axis,
and for emitters oriented in thexy plane. In the latter case,
we will be interested only in the average emission for dipole
vectors oriented along the two in-plane directionsx and y.
The total spontaneous emission for these two types of orien-
tation of the generating currents depends only on the radiusr
due to symmetry considerations.

The formalism developed in Sec. III for calculating the
transverse electric-field Green’s tensor requires that the gen-
eralized transverse eigensolutions@ln ;En(r )# of Eq. ~21! are
obtained.

Taking advantage of the circular symmetry of the problem
we will quantize the eigenfunctionsEn(r ) in cylindrical
wave functions. Generalized transverse solutions may be
constructed by introducing both the electric fieldEn and the
magnetic fieldHn given by Hn5“3En /( i ṽnm0), where
ṽn

25v22lnc2, and requiring the tangential components of
both fields to be constant across the interface between core
and cladding.

The eigenmodesEn and the corresponding fieldsHn may
be quantized in cylindrical wave functions in the form

Ea~r,f,z!5Fa~r!eimfeibz, ~34!

Ha~r,f,z!5Ga~r!eimfeibz, ~35!

wherea represents the quantization indices. In a cylindrical
coordinate system the vectorsFa(r) and Ga(r) do not de-
pend on the anglef, and therefore thef dependence of
these vectors has been suppressed. The eigensolutions may
be divided into two types of solutions, which we refer to as
radiation modes and guided modes, respectively. For radia-
tion modes, there are four quantization indicesa
5$m,p,b,q%, whereb is the component of the wave vector
along thez axis, q represents the magnitude of the wave
vector perpendicular to thez axis, m is the angular momen-
tum, and the indexp is used to distinguish between two
degenerate polarization modes for givenm, b, andq.

In the first part of this section, we will consider the con-
tribution to the Green’s tensor related to radiation modes,
and then come back to the contribution related to guided
modes at the end of the section.

The substitution of Eq.~34! into the eigenvalue problem
~21!, leads to the following differential equations for thez
component of the electric field for the optical fiber

~kr!2
]2Fz,a

]~kr!2
1kr

]Fz,a

]~kr!
1@~kr!22m2#Fz,a50, r<a,

~qr!2
]2Fz,a

]~qr!2
1qr

]Fz,a

]~qr!
1@~qr!22m2#Fz,a50, r.a,

~36!

where

k25~k0
22la!«12b2,

q25~k0
22la!«22b2. ~37!

Here la is the eigenvalue of the eigensolution with quanti-
zation indicesa, and «15n1

2 and «25n2
2 represent the di-

electric constant in the core and cladding of the fiber, respec-
tively.

For radiation modes, eigensolutions exist for all combina-
tions ofm, b, andq. By applying the boundary condition that
the field amplitude must remain finite, both in the core and
cladding, thez component of the two fieldsFa andGa may
be written in the form

Fz,a~r!5H AaJm~kr!, r<a

Ca
1H (1)

m~qr!1Ca
2H (2)

m~qr!, r.a
~38!

Gz,a~r!5H BaJm~kr!, r<a

Da
1H (1)

m~qr!1Da
2H (2)

m~qr!, r.a.
~39!

The other componentsFr,a , Ff,a , Gr,a , andGf,a may be
expressed in terms ofFz,a and Gz,a by using Maxwell’s
equations@62#.

In the above equations,Jm is the Bessel function of the
first kind of orderm, andHm

(1) , Hm
(2) are the Hankel functions

of the first and second kind of orderm. The boundary con-
ditions, which requireFz,a , Ff,a , Gz,a , and Gf,a to be
continuous across the core-cladding interface, result in four

FIG. 1. Illustration of the circular step-index optical fiber with
core refractive indexn1, cladding refractive indexn2, and core
diameter 2a. A Cartesian coordinate system (x,y,z) is introduced
with the origin placed in the center of the fiber core, and with the
fiber oriented along thez axis. The position of a point source is
given by (r,f,z).
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linear equations from whichCa
1 , Ca

2 , Da
1 , and Da

2 are
given in terms ofAa andBa . For each set of indicesb, q,
andm, the polarization indexp labels two linearly indepen-
dent choices ofAa and Ba . A calculation of the relations
between the coefficientsAa , Ba , Ca

1 , Ca
2 , Da

1 , andDa
2 ,

and a construction of a biorthogonal set of radiation modes,
is given in Appendix A.

We define the adjoint solutionẼa to be Ẽa5(Eã)* ,

whereã5$2m,p,2b,q%. It is clear that with this definition
Ẽa is a solution to the complex conjugate of Eq.~21!, such
thatH †g̃a5la* g̃a for g̃a5A«* Ẽa . The reversion of angular
momentum (m→2m) and the direction of propagation (b
→2b) are chosen to satisfy the biorthogonality condition
~17!.

The part of the generalized transverse Green’s tensor re-
lated to radiation modes, may now be constructed, i.e.,

GGT
(1)~r ,r 8;v!5(

m,p
E

b52`

` E
q50

` «2Fa~r!Fã~r8!exp@ im~f2f8!#exp@ ib~z2z8!#

Na~k0
2«22b22q2!

dbdq, ~40!

where the normalization factorNa and the biorthogonality of
radiation modes, are given by

E «~r !Ea~r !•Eã8~r !d3r 5Nadmm8dpp8d~b2b8!d~q2q8!.

~41!

Here,a8 is short-hand notation fora85$m8,p8,b8,q8%.
The expression~40! is valid not only for passive fibers,

but it may also be used for fibers with gain and/or absorp-
tion. The expression may be simplified by introducing two
new parametersk andu related tob andq by

b5k cosu, ~42!

q5k sinu, ~43!

and by taking advantage of the identity

1

x1 i e
5P

1

x
2 ipd~x!, ~44!

whereP refers to the principal value. The corresponding re-
tarded Green’s tensor, taken atr5r 8, may then be written

GGT
(1)~r ,r ;v1 i e!

5(
m,p

PS E
k50

` E
u50

p «2Fa~r!Fã~r!

Na~k0
2«22k2!

k dk du D
2 i E

u50

p

I ~u!sinu d u, ~45!

where

I ~u!5
p

2 (
m,p

S «2Fa~r!Fã~r!

Na sinu D
k5k0A«2

. ~46!

For a fiber with absorption or gain in the core region~but not
for a passive fiber! the principal value integral taken atr
5r 8 does converge, and this is true for both the imaginary
part and real part of the integral. The modeling of spontane-
ous emission in active fibers requires a calculation of the

imaginary part of the principal-value integral. However, for
passive structures the calculation is greatly simplified, since
in this case«2Fa(r)Fã(r)/Na is real, and the principal-
value integral does not contribute to Im@GGT

(1)(r ,r ;v1 i e)#,
which is the term appearing in expression~12!. In the second
term of Eq.~45! the angleu may be interpreted as the off-
axis angle of propagation for light emitted into radiation
modes, and accordingly the expression has the form of an
integration over an off-axis angular radiation pattern, where
the radiation patternI (u) is given by Eq.~46!. This interpre-
tation is, however, only valid for passive structures, since
I (u) may become negative for certain angles for active struc-
tures. A similar simple calculation of radiation patterns is not
possible via Eq.~45! for active structures. In this case a
calculation of physically meaningful radiation patterns must
take into account amplification and absorption, which is pos-
sible by calculating radiation patterns using the Poynting
vector. Radiation patterns for active structures are considered
in Sec. VI.

The expressions~34!, ~35!, ~36!, and ~37! are also valid
for guided modes, whereq is now a complex parameter with
a positive imaginary part leading to exponential decay inr
of the amplitude of the eigenfunction. In this case the eigen-
functions are restricted to propagation only along thez axis,
and the degrees of freedom have been reduced relative to
radiation modes. Therefore,b andq can no longer be chosen
independently of one another, and only three quantization
indicesa5$m,n,b% must be summed over. We follow the
usual convention and replaceq by the variableg52 iq. The
z component of a guided mode may then be written as

Fz,a~r!5H AaJm~kr!, r<a,

CaKm~gr!, r.a,
~47!

Gz,a~r!5H BaJm~kr!, r<a,

DaKm~gr!, r.a.
~48!

HereKm is the modified Bessel function of the second kind
of orderm. As is also the case for radiation modes, the co-
efficientsAa , Ba , Ca , andDa must be chosen so that the

T. SO”NDERGAARD AND B. TROMBORG PHYSICAL REVIEW A64 033812

033812-6



boundary conditions are satisfied. Due to these conditions,
the allowed values forg become functions ofa, i.e., g
5ga . Furthermore, each modem,n only exists for ubu
>bm,n,c , wherebm,n,c is a cutoff propagation constant such
that Re(ga)>0 for ubu>bm,n,c . Here, we choose to use real
propagation constantsb, and accordingly the eigenvaluesla

become complex. We will not go into a detailed derivation of
the guided modes of the fiber here, as this is a topic that has
been studied extensively in the literature~see, for example
Refs. @63,64#!. The contribution to the Green’s tensor from
the guided modes may be written

GGT
(2)~r ,r 8;v!

5(
m,n

E
ubu>bmn,c

«2Fa~r!Fã~r8!eib(z2z8)eim(f2f8)

Na~k0
2«21ga

22b2!
db,

~49!

where ã5$2m,n,2b%. The normalization factorNa and
biorthogonality relation for guided modes are given by

Nadmm8dnn8d~b2b8!5E «~r !Ea~r !•Eã8~r !d3r .

~50!

As was also the case for radiation modes, the imaginary part
may be greatly simplified for passive structures by taking
advantage of the identity~44!, i.e.,

Im~GGT
~2!~r ,r ;v1 i e!!

52p( 8m,nS «2Fa~r!Fã~r!

NaU d

db
~b22ga

2!U D
b22ga

25k
0
2«2

.

~51!

Here, the prime means that only modesm,n with ubm,n,cu
,k0A«2 should be summed over.

The generalized transverse part of the retarded Green’s
tensor may now be obtained as the sum of the two contribu-
tions given in Eqs.~40! and ~49!. The double-transverse
Green’s tensor may be obtained by replacing the generalized
transverse fields in the numerators of Eqs.~40! and ~49! by
the transverse part of these fields. A method for calculating
the transverse part of the generalized transverse fields is
given in Appendix B. For fibers with relatively weak index
contrast, the difference between the generalized transverse
and the usual transverse@26,61# Green’s tensor is almost
negligible. However, this may not be the case for dielectric
structures with high index contrasts such as those investi-
gated by, for example, Dodabalapuret al. @65#.

V. SPONTANEOUS EMISSION IN A PASSIVE FIBER

In this section we will evaluate the spontaneous emission
going into radiation modes and bound modes for a passive
optical fiber. Only for passive fibers is it really meaningful to
consider the fraction of spontaneous emission going into spe-

cific modes, in this case, due to the existence of a complete
set of orthogonal eigenmodes. In the following section we
will then consider physically meaningful radiation patterns
for active fibers, taking into account the effect of gain and
absorption.

The passive fiber under concern, is defined by a core re-
fractive index n151.45, a cladding refractive indexn2
51.43, and a core radiusa52 mm. The emitter is located at
r05(r0 ,f0 ,z0) in the fiber. In order to properly normalize
the spontaneous emission, we will introduce the spontaneous
emissionGhom from an emitter in a passive homogeneous
dielectric material with the same refractive index as the core
of the optical fiber, i.e.,

Ghom5
v0

3m2n1

\«0c33p
, ~52!

wherem is the norm of the dipole vectorm. This expression
is easily obtained using Eq.~12! for the case of a dipole at
positionr050, and dipole orientation along thez axis, or by
using the results for homogeneous dielectrics given in Ref.
@32#.

An example of the position dependence of the spontane-
ous emission for an emitter with transition wavelength
1560 nm in the core of the fiber, is shown in Fig. 2 for the
case of dipole orientation along thez axis (Gz) and for the
average over the two in-plane dipole orientationsx and y,
i.e., G'5(Gx1Gy)/2. The spontaneous emission averaged
over all dipole orientations is given byG5(Gx1Gy1Gz)/3.
The spontaneous emission into radiation modes clearly
shows a modulation with position in the fiber, which may be
explained as a cavity effect. The periodicityDr0 in the spon-
taneous emission with position in the fiber core due to con-
structive destructive interference arising from reflections at
the core-cladding interface, should be roughly equal to one-
half wavelength in the medium, i.e.,

Dr0

a
'

l0

2an1
. ~53!

From this expression, we obtain the periodicityDr0 /a
'0.27. From the total emission for emitters withz dipole
direction @see Fig. 2~c!# the distance between local maxima
or local minima is in the range from 0.26 to 0.28.

Almost no spontaneous emission goes into guided modes
for the case of dipole orientation along thez axis. This is due
to the electric field of the fundamental guided mode of the
optical fiber having a negligible field component along thez
axis, i.e., the electric field is primarily in thexy plane. Emis-
sion into radiation modes for dipole orientation in thexy
plane is clearly lower compared to the case of dipole orien-
tation along thez axis. This is due to part of the spontaneous
emission being captured by the optical waveguide. From the
total spontaneous emission into both guided modes and ra-
diation modes, we see that the total spontaneous emission is
close toGhom for all positions. Therefore Fig. 2~b! also gives
a good estimate for the spontaneous emission factor, i.e., the
fraction of the spontaneous emission going into the guided
modes of the optical waveguide. The decrease in the total
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spontaneous emission near the core-cladding interface, may
be explained from the fact that the spontaneous emission in
homogeneous dielectrics scales with the refractive index@see
Eq. ~52!#, and emitters close to the core-cladding interface
are affected by the presence of a material with a lower re-
fractive index. The total emission near the core-cladding in-
terface is clearly different for the different dipole orienta-
tions. This may be explained from the fact that the boundary
conditions at the core-cladding interface depend on the field

orientation, i.e., the tangential electric-field components are
constant across the interface, whereas normal components
differ by the factorn1

2/n2
251.03.

Figure 3 shows the spontaneous emission as a function of
normalized frequencyV5k0aAn1

22n2
2 for an emitter in the

center of the fiber core (r050). Also, in this case, the peri-
odic oscillations, seen in the spontaneous emission, is due to
constructive destructive interference arising due to reflec-
tions at the core-cladding interface. The oscillations in the

FIG. 2. Spontaneous emission as a function of position for an
emitter in the core of a step-index fiber with core refractive index
n151.45, cladding refractive indexn251.43, and core radiusa
52 mm. The emission wavelength isl051560 nm.

FIG. 3. Spontaneous emission as a function of normalized fre-
quency for an emitter located in the center of the core of a step-
index fiber withn151.45, n251.43,a52 mm.
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total spontaneous emission@Fig. 3~c!# are clearly larger for
emitters oriented along thez axis. Emitters with this orienta-
tion emit primarily in thexy plane, and interference effects
due to reflections from the core-cladding interface are there-
fore more pronounced. Emitters placed in the center of the
waveguide with dipole orientation in thexy plane are only
allowed to interact with modes having angular momentum
m561. The fundamental fiber mode starts to become local-
ized for normalized frequenciesV just below 1. There are
also guided modes with angular momentum61 that become
allowed for V>4. Around both frequenciesV51 and V
54, a strong decrease is seen in the spontaneous emission
going into radiation modes for in-plane dipoles. This is com-
pensated by a corresponding strong increase in the spontane-
ous emission into guided modes, and the total rate of spon-
taneous emission is oscillating with frequency aroundGhom.
The spontaneous emission into guided modes for emitters
with dipole orientation along thez axis, starts at normalized
frequencies aroundV'2.4. This frequency corresponds to
the single-mode cutoff of step-index optical fibers@62#.

VI. SPONTANEOUS EMISSION ANGULAR RADIATION
PATTERNS

The emission of radiation from active dielectric micro-
structures, will in general differ from the spontaneous emis-
sion due to the amplification or absorption of light. In this
section we will present radiation patterns for active optical
fibers, taking into account the effect of the active material
using a Poynting-vector approach.

In Fig. 4 the optical fiber is oriented along thez axis in a
Cartesian coordinate system (x,y,z). Two anglesu and f
are introduced. The angular radiation pattern is defined as the
radial emission per unit solid angle as a function of the di-
rection given byu andf. In evaluating the angular sponta-
neous emission pattern in a rigorous way, we may note that,
far away from the active fiber, the power flux is radial, and
the power fluxdP per unit solid angledV may be written in
the form

dP

dV
5R2uS~R!u, ~54!

whereR is the position relative to the source,R5uRu, andS
is the Poynting vector, which for large distancesR reduces to

S52
R

R
«0n2c^Ê†

•Ê&. ~55!

The emission rate into radiation modes per unit solid angle
dV is given by

dG

dV
5 lim

R→`

1

\v
uS~R!uR2. ~56!

Note that this expression only equals thespontaneousemis-
sion for passive structures, since for the case of amplifying
or absorbing structures, the spontaneously emitted light has
been amplified or attenuated by the active medium.

The electric field at large distances is given in terms of the
Green’s tensor and generating currents by

Ê~R!5E E G~R,r 8;v1 i e!•@2 im0v ĵT~r 8!#d3r 8.

~57!

According to this equation, and the properties of the Green’s
tensor, the transverse currents generate a generalized trans-
verse electric field. However, only the transverse component
of these fields contribute to the rate of spontaneous emission.
At large distances from the fiber, the longitudinal component
of the electric field is negligible, and the field at such a
distance is transverse.

For the case of delta-correlated currents, the amplitude of
the electric field squared at positionR generated by the trans-
verse part of a dipole current at positionr0 with dipole ori-
entationei , is given by

^Ê~R!†
•Ê~R!&

5m0
2v4m2U E G~R,r 8;v!•dT~r 8,r0!•eid

3r 8U2

,

~58!

and the spontaneous emission per unit solid angle in the
direction given byR, may in the limit of large distancesR
5uRu be written

dG

dV
5

v3m2A«2

\«0c3
2 lim

R→`
U E G~R,r 8;v!•dT~r 8,r0!•eid

3r 8U2

.

~59!

For a gain medium, the expression~59! only gives the am-
plified emission from the dipole atr0. We ignore the ampli-
fied spontaneous emission from the gain medium itself. The
latter can be included by calculating^Ê†

•Ê&, using Eq.~57!
and the correlation relation~8!.

For large R, the electromagnetic field behaves as a plane
wave with the wave numberk0A«25Ab21q2, and the mag-
nitude ofb andq is determined from the off-axis angleu of
the vectorR, i.e., b5k0A«2 cosu andq5k0A«2 sinu. With
this restriction imposed onb, q, and using the notation for

FIG. 4. Illustration of an optical fiber oriented along thez axis in
a Cartesian coordinate system (x,y,z). Two anglesu and f are
introduced.
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radiation modes in Sec. IV, a general expression for the an-
gular emission pattern for active fibers generated by currents
at position (r0 ,f0 ,z0) is given by

dG

dV
5

v3m2A«2

\«0c3
2

~2p!2

k0
2«2sin4u

3S U(
m,p

Ca
1e2 i (mp/2)

Fi ,ã
T~r0!eim(f2f0)

Na
U2

1U(
m,p

A m0

«0«2
Da

1e2 i (mp/2)
Fi ,ã

T~r0!eim(f2f0)

Na
U2D .

~60!

Here, Fi ,ã
T(r0)e2 imf0e2 ibz0 is the component of the field

Eã
T(r0) in the directionei , corresponding to the orientation

of the dipole vector. Note that the emission per unit solid
angle Eq.~60! depends on both anglesu andf, whereas the
radiation pattern Eq.~46! does not depend onf.

Figure 5 shows a calculation of the off-axis angular spon-
taneous emission pattern Eq.~60! averaged over the anglef
for an emitter in the center of the fiber core and at the edge of
the fiber core, respectively, for a passive step-index fiber
with core refractive index 1.45, cladding refractive index
1.43, and core radius 2mm. The results presented in this
figure may also be obtained directly using the off-axis angu-
lar radiation pattern given in Eq.~46!. In fact, for a passive
fiber, the sum of expression~60! integrated over all solid
angles and the corresponding contribution from guided
modes, will equal the expression~12!. The transition wave-
length of the emitter is 1560 nm. The radiation pattern for
emitters oriented along thez axis (Gz) closely resembles a
figure eight (Gz}sin2u), which is the radiation pattern gen-
erated by a dipole in a homogeneous dielectric medium. Part
of the radiation generated by emitters oriented in thexy
plane, is captured by the optical waveguide, and for small

off-axis anglesu, the radiation pattern is clearly modified
relative to the case of a homogeneous dielectric medium
(Gx1Gy}11cos2u). The radiation patterns, shown in Fig. 5,
are characterized by a peak for a small off-axis angleu. As
the transition wavelength decreases and approaches the cut-
off wavelength for the next guided mode, the peaks will
grow larger and the peak angle will move toward 0. As the
wavelength drops below the cutoff wavelength, the peaks
being nearly parallel to thez axis will disappear, and a new
guided mode will appear. This explains that although abrupt
changes with frequency is possible for the emission into ra-
diation modes and guided modes, a similar abrupt change
should not be expected in the sum of emission into radiation
modes and guided modes. This is also in agreement with the
results shown in Fig. 3.

Figure 6 shows a similar calculation of the angular emis-
sion patterns averaged over the anglef for the case of emit-
ters at the edge of the fiber core for the cases of fibers with
amplification and absorption. Clearly, by comparing Figs. 5
and 6, the effect from absorption in the fiber is a reduction in
the peaks seen for small angles in Fig. 5~b!, and the effect of
gain is that these peaks are enhanced. The effect of an active
medium will be most pronounced for small off-axis anglesu,
where the emitted light will interact with the active material
for a longer time and over longer lengths. Consequently, the
amplification of spontaneous emission from in-plane emitters
(Gx1Gy) will be more efficient compared to the case of
emitters directed along thez axis (Gz). The spontaneous
emission, as a function of position into radiation modes for a
passive structure, was given in Fig. 2~a!. In this case, the
emission for in-plane emitters@G'5(Gx1Gy)/2# is clearly
lower for all positions r0<a compared to the case of
z-directed emitters (Gz). As was the case for Fig. 5, the Fig.
2~a! may also be obtained by integrating Eq.~60! over all
solid angles. The physically measurable emission into radia-
tion modes must reflect the effect of amplification or absorp-
tion for structures with an active medium. Figure 7 shows the
measurable emission into radiation modes as a function of
positionr0 for a fiber with gain. The emission for both the
considered orientations of the currents has increased relative
to the spontaneous emission in the corresponding passive

FIG. 5. Spontaneous emission as a function of the off-axis angle
for an emitter in the center of the core and an emitter at the edge of
the core of a step-index fiber withn151.45, n251.43, a52 mm,
and forl051560 nm.

FIG. 6. Spontaneous emission as a function of the off-axis angle
for an emitter at the edge of the core of a step-index fiber witha
52 mm,n251.43 and~a! n151.452 i0.003,~b! n151.451 i0.003,
and forl051560 nm.
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fiber, and the emission from in-plane oriented emitters (G')
has been amplified more, relative to the case ofz-directed
emitters (Gz). For both orientations of the emitter, the am-
plification is clearly larger for emitters in the center of the
core (r050) relative to emitters at the edge of the core
(r05a).

For active fibers, where the distribution of active material
is a function of the radiusr only, averaging over the anglef
is reasonable. However, the Poynting-vector approach does
allow the dependence on the anglef, relative to the angle
f0, related to the position of the emitter, to be taken into
account in the radiation patterns. An example is given for
f2f050, p in Fig. 8 for a fiber with absorption, a passive
fiber, and a fiber with gain. The emitter is placed at the edge
of the core. The radiation patterns are clearly asymmetric due
to the asymmetric position of the emitter (r0Þ0). The effect
of amplification or absorption is strongest forf2f05p,
since this direction corresponds to the opposite side of the
active fiber relative to the emitter. Also, in this case, the
peaks observed for small off-axis anglesu for a passive fiber,
increases~decreases! for a fiber with gain~absorption!.

VII. CONCLUSION

In conclusion, a general method has been developed for
the modeling of spontaneous emission in active dielectric

microstructures. The fully vectorial method is based on the
classical retarded electric-field Green’s tensor, giving the re-
lation between the quantum-mechanical operators for the
electric field and the generating currents. Taking advantage
of the currents related to spontaneous radiative decay being
transverse currents, allows a formalism, where only the
double-transverse Green’s tensor needs to be calculated. The
double-transverse part of the Green’s tensor thus becomes a
key ingredient in the model for spontaneous emission. A gen-
eral approach was given for the construction of the Green’s
tensor for active dielectric microstructures. This approach
does not rely on the existence of a complete power orthogo-
nal set of electromagnetic modes, and is therefore valid for
dielectric structures with absorption and/or amplification.

The method for spontaneous emission was applied to a
fiber amplifier, and as a first step the Green’s tensor for this
structure was calculated. One of the terms in the calculated
expression for the electric-field Green’s tensor was inter-
preted as an integration over an off-axis angular radiation
pattern, and agreement has been found with this interpreta-
tion and the radiation patterns calculated using the Poynting
vector. A similar interpretation of the expression for the
Green’s tensor for fibers with gain or absorption is not pos-
sible, since a physically measurable radiation pattern must
take into account the amplification or absorption of sponta-
neously emitted light due to the presence of an active me-
dium. A Poynting-vector approach has the advantage that
radiation patterns that depend on both the off-axis angle and
the azimuthal angle, may be obtained.

For a passive fiber, the expressions for the relevant parts
of the Green’s tensor become particularly simple, and for
passive fibers the spontaneous emission going into radiation
modes and guided modes was studied. Although the emission
into these two types of modes is clearly different, and also
depend on the orientation of the generating currents, the sum
of these two contributions oscillates closely around the rate
of spontaneous emission for a homogeneous dielectric me-
dium with the same refractive index as the fiber core. The
oscillations observed with position and frequency are ex-
plained as a consequence of destructive and constructive in-
terference due to reflections from the interface between the
fiber core and cladding. Abrupt changes with frequency in
the emission into radiation modes and guided modes were
observed at frequencies where new guided modes appear.
Similar abrupt changes with frequency are not observed in
the sum of these two contributions. This was explained from
radiation patterns calculated using the Poynting-vector ap-
proach, where strong peaks, being nearly parallel to fiber
axis, exist just before the next guided mode appears. The
peaks disappear as the new guided mode appears.

The effect of an active medium on the radiation pattern is
strongest for emission propagating at small off-axis angles.
In particular, the peaks transforming into a new guided mode
as the frequency increases, are enhanced~attenuated! for a
core region with gain~absorption!.

APPENDIX A: BIORTHOGONALITY AND
NORMALIZATION OF RADIATION MODES

This appendix concerns the relations between the coeffi-
cientsAa , Ba , Ca

1 , Ca
2 , Da

1 , andDa
2 in Eqs.~38! and~39!

FIG. 7. Emission into radiation modes as a function of position
for an active fiber withn151.45–i0.003 ~gain!, n251.43, a52
mm, and forl051560 nm.

FIG. 8. Spontaneous emission as a function of the off-axis angle
for an emitter at the edge of the core of a step-index fiber witha
52 mm, n251.43,~a! n151.452 i0.003,~b! n151.451 i0.000,~c!
n151.451 i0.003, and forl051560 nm.
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for a given set of quantization parametersm,b, andq, and
we will use the notation introduced in Sec. IV. Due to the
boundary conditions at the core-cladding interface, these co-
efficients are not independent. Furthermore, in this appendix,
a biorthogonal set of radiation modes is constructed, and a
normalization integral for the modes is calculated.

The relations betweenCa
1 , Ca

2 , Da
1 , Da

2 , and Aa and
Ba may be expressed by first introducing a number of con-
stants

T5Hm
(1)8~qa!Hm

(2)~qa!2Hm
(2)8~qa!Hm

(1)~qa!5
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pqa
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K15 i
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mJm~ka!Hm

(2)~qa!Ab21q2
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«22«1
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K25 i
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mJm~ka!Hm
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«22«1
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k
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(2)~qa!2
1

q
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Jm8~ka!Hm
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1

q
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(1)8~qa!,

~A5!

L15
«1

k
Jm8~ka!Hm
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Jm~ka!Hm
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~A6!

L25
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k
Jm8~ka!Hm

(1)~qa!2
«2

q
Jm~ka!Hm

(1)8~qa!,

~A7!

where here (8) denotes the derivative with respect to the
argument.

In terms of these constants, the relations betweenAa ,
Ba , Ca

1 , Ca
2 , Da

1 , and Da
2 , obtained from the boundary

conditions, may be written

Ca
15

q

T«2
~AaL11m0cBaK1!, ~A8!

Ca
25

q

T* «2

~AaL21m0cBaK2!, ~A9!

m0cDa
152

q

T
~AaK12m0cBaM1!, ~A10!

m0cDa
252

q

T*
~AaK22m0cBaM2!. ~A11!

Clearly, only two coefficients are linearly independent, and
the indexp will be used to label two such linearly indepen-

dent solutions. These two solutions must be chosen so that
the biorthogonality requirement

E «~r !Ea~r !•Eã8~r !d3r 5Nadmm8dpp8d~b2b8!d~q2q8!

~A12!

is satisfied. Similar to what was reported in Ref.@66# for
dielectric waveguides, all finite terms resulting from the in-
tegration in the fiber core, will cancel with each other. The
singular terms that give rise to the Dirac delta functions,
result only as the integration limits tend to infinity. Taking
advantage of the cancellation of finite terms, we need only
identify the factorNa in front of the d functions. Thereby,
the evaluation of the integral in Eq.~A12! is aided signifi-
cantly by taking advantage of the following limiting forms of
the Hankel functions:

Hm
(1)~qr!'A 2

pqr
ei (qr2mp/22p/4), r@1/q, ~A13!

Hm
(2)~qr!'A 2

pqr
e2 i (qr2mp/22p/4), r@1/q.

~A14!

Straightforward calculations then lead to

E
r50

`

@Fa~r!•Fã8~r!#
b5b8
m5m8

rdr

5
4

qq8Aqq8
H F ~qq81b2!Ca

1Ca8
2

2
m0

«0«2
A~b21q2!~b21q82!Da

1Da8
2 Gd1~q2q8!

1F ~qq81b2!Ca
2Ca8

1

2
m0

«0«2
A~b21q2!~b21q82!Da

2Da8
1 Gd2~q2q8!J

3~21!m1non-singular terms, ~A15!

where

d6~q2q8!5
1

2pEr50

`

e6 i (q2q8)rdr. ~A16!

Note thatd(q2q8)5d1(q2q8)1d2(q2q8).
The polarization indicesp, p8 represent a specific choice

of the sets of coefficientsAa , Ba and Aa8 , Ba8 for a
5$m,p,b,q% anda85$m,p8,b,q%. A convenient choice of
coefficients is Aa51, Aa851, Ba5 ih, and Ba852 ih,
sinceh can be chosen in such a way that the two polarization
modes are biorthogonal. The requirement for two modes to
be biorthogonal is obtained from Eq.~A15!, i.e.,
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Ca
1Ca8

2
2

m0

«0«2
Da

1Da8
2

5Ca
2Ca8

1
2

m0

«0«2
Da

2Da8
1

50.

~A17!

Using Eqs.~A8!–~A11! biorthogonal modes are obtained for

h25
«0«2

m0

«2K1K22L1L2

«2K1K22«2
2M1M2

. ~A18!

For a homogeneous dielectric medium with dielectric con-
stant «2, the equation~A18! reduces to the well-knownh
56A«0«2 /m0.

The normalization factorNa is obtained from Eq.~A12!
and Eq.~A15!, i.e.,

Na5«2~2p!24
b21q2

q3 FCa
1Ca

22
m0

«0«2
Da

1Da
2G~21!m.

~A19!

APPENDIX B: THE TRANSVERSE DELTA OPERATOR dT

FOR NONHOMOGENEOUS DIELECTRIC MEDIA

This appendix concerns the construction of the transverse
delta operatordT related to a dielectric constant«(r ). It is
defined as the operator that projects an arbitrary vector field
F(r ) onto its transverse componentFT(r ), i.e., dTF5FT ,
where

F5FT1FGL ~B1!

with “•FT50 and“3(FGL /«)50.
By inspection one can easily verify that

FGL5(
n

«~r !“fn~r !

Mn
E @“f̃n~r 8!#* •F~r 8!d3r 8,

~B2!

wherefn and Mn are given by Eq.~28! and Eq.~29!. The
expression obviously satisfies the condition forFGL /« being
longitudinal, and the completeness of the solutions to Eq.
~28! ensures thatF2FGL is transverse. Hence

dTF5FT5F2FGL , ~B3!

and

dT
†F~r !5F~r !2(

n

“f̃n~r !

Mn*

3E @«~r 8!“fn~r 8!#* •F~r 8!d3r 8. ~B4!

In the case of a passive structure~real «) we have

dT
†En5En

T5En , ~B5!

and

dT
†
“fn50 ~B6!

for a generalized transverse fieldEn and for any solutionfn
to Eq. ~28!. For Eq.~32! this implies thatGT5GGT .
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