-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
oo

General theory for spontaneous emission in active dielectric microstructures:
Example of a fiber amplifier

Sgndergaard, Thomas; Tromborg, Bjarne

Published in:
Physical Review A (Atomic, Molecular and Optical Physics)

Link to article, DOI:
10.1103/PhysRevA.64.033812

Publication date:
2001

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Sgndergaard, T., & Tromborg, B. (2001). General theory for spontaneous emission in active dielectric
microstructures: Example of a fiber amplifier. Physical Review A (Atomic, Molecular and Optical Physics), 64(3),
033812. DOI: 10.1103/PhysRevA.64.033812

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/13733619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.64.033812
http://orbit.dtu.dk/en/publications/general-theory-for-spontaneous-emission-in-active-dielectric-microstructures-example-of-a-fiber-amplifier(d70cc510-9400-42d3-aeaa-3c129c1cd175).html

PHYSICAL REVIEW A, VOLUME 64, 033812

General theory for spontaneous emission in active dielectric microstructures:
Example of a fiber amplifier
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A model for spontaneous emission in active dielectric microstructures is given in terms of the classical
electric field Green'’s tensor and the quantum-mechanical operators for the generating currents. A formalism is
given for calculating the Green'’s tensor, which does not rely on the existence of a complete power orthogonal
set of electromagnetic modes, and the formalism may therefore be applied to microstructures with gain and/or
absorption. The Green’s tensor is calculated for an optical fiber amplifier, and the spontaneous emission in fiber
amplifiers is studied with respect to the position, transition frequency, and vector orientation of a spatially
localized current source. Radiation patterns are studied using a Poynting vector approach taking into account
amplification or absorption from an active medium in the fiber.
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[. INTRODUCTION If the material is active and has loss and/or gain, the so-
lutions to Maxwell’s equations cannot be expanded in power
The spontaneous emission properties of an emitteorthogonal modes, and the concept of modes becomes more
changes when it is placed in a small cavjty], between subtle. In that case, it is convenient to use the electromag-
mirrors[2,3], or in a medium with spatially varying dielec- netic fields and generating currents as primary observables
tric constan{4—8]. The general explanation is that a cavity represented by operators that are defined by their commuta-
or a varying dielectric constant will modify the strength andtion relations. The relation between field and current opera-
distribution of electromagnetic modes with which an emitterfOrs is given by a classical electric-field Green's tensor. This
can interact, resulting indirectly in altered spontaneous emis2/lows a calculation of spontaneous emission even for ex-
sion properties. The effect was first noticed by Purcell inténded and dynamically varying structures as, for example, a
1946 [1] and has since been demonstrated in a number cmodulated laser diode. The studies of QED for dielectric

experiments on Rydberg atoms, quantum dots, and rare-eaﬂmate“als have essentially followed two parallel approaches

materiald 9—18]. One of the perspectives of the effect is that"" the. physics and the guantum electronics communities, re-
o . spectively. The physics approa¥—37] has focused on the
spontaneous emission of an emitter can, to some extent, b

. o ! Traterial aspects of QED for dielectrics such as the influence
controlled and even engineered by tailoring the surroundln%]c absorption, dispersion, and inhomogeneities
structure on a transition wavelength scale. ' : )

: The quantum electronics approa@ee, for example, the
The standard approach to calculation of the rate of Spo”papers{38—4q and references in Ref44]), has been driven

taneous emission for an atom placed in an empty metalligy stydies of spontaneous emission in optical waveguides
cavity or in free space, is to expand the radiation field ingng has explored the effect of the absence of a complete set
power orthogonal modes normalized to one quantum of engf power orthogonal modes. In fact, the phenomenon of ex-
ergy and use the Fermi golden rule. If the emitter is embedcess noise in guided modes introduced by Petermia8iis,
ded in a dielectric material, the coupling between matter angs pointed out first by Haus and Kawaka8], related to
the radiation field requires a QED formulation of Maxwell's the nonexistence of a complete set of power orthogonal elec-
equations for the dielectric medium in order to calculate theromagnetic modes. The analyses of spontaneous emission in
rate of spontaneous emission from the emitter. For passivactive dielectric waveguides in Ref88-49 are based on
media without gain or absorption, it is possible, as in freethe scalar wave equation for the electromagnetic field. The
space, to expand the radiation field in power orthogonakcalar methods give the rate of spontaneous emission into
modes and to use the expansion as a basis for quantizatioguided modes, but they do not give the total rate of sponta-
This is, for example, the method for calculating spontaneouseous emission. This requires taking into account the cou-
emission rates in photonic band-gap structuf&9-21], pling to the complete radiation field and not only the guided
where the local density of electromagnetic modes may benodes.
strongly modified and even zero in certain frequency ranges In this paper we extend the analysis of spontaneous emis-
due to a periodically varying dielectric constd@t—23. sion, based on the approximate scalar wave equation, to a
full vectorial approach valid for general active dielectric mi-
crostructures. The total rate of spontaneous emission from an
*FAX: +45 45 93 65 81. Email address: ts@com.dtu.dk emitter in an active dielectric medium can be expressed in
TFAX: +45 45 93 65 81. Email address: bt@com.dtu.dk terms of the classical Green’s tensor, or to be more precise,
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the double-transverse part of the tensor. We present a genemlea real current density is theref(fre j“r’
method for calculating this tensor from complete sets of biorarmitian conjugation, and where
thogonal modes for the vector wave equation. The vectorial

nature of the formalism allows calculation of spontaneous R 1 (= _
emission depending on position, transition frequency, and j(r,t)=2—J j(r;me '"“do, (D)
polarization of the emitter in a dielectric microstructure with mJo

loss or gain. Vectorial Green’s tensor methods for decay of . . . - .
excited molecules have previously been given for the case di€ integration being only over positive angular frequencies
homogeneous absorbing dielectric media], for an absorb- - R

ing dielectric surface[35], and in a series of papers by ~ The current density is the sum of two pajigr,t) and
Tomasand Lenac for absorbing layered structug8—52. Jeu(r,t) with V-j:=0 andV X (jg. /e)=0[60]. It is actu-

We exemplify the method by analyzing spontaneousy|ly only the transverse part of the curreftgr,t), which
emission in an optical fiber. The step-index fiber is suffl—Contributes to spontaneous emission; the E)@{(r t) con-

ciently simple to allow analytical solutions for the Green S tributes to the nonradiative decay rd&2]. For a homoge-

function for both passive and active fibers; the solutions il- , . s~
lustrate some subtle issues related to the singularity of thB€0US medium with constaat the componenie,_ is simply

Green’s function that are not easily studied by purely nuthe longitudinal part, but for nonhomogeneous meflig,is
merical methods. We take into account both position andhe generalized longitudinal part. Notice, that in splitting the
vector orientation of spatially localized generating currentscurrent intoj; andjg, the transverse part is also affected by
Our method allows taking spontaneous emission into accoury, when this is nonuniform.

into the radiation modes of the electromagnetic field, and The average rate of energy dissipation, due to spontane-
thereby the total rate of spontaneous emission from an emits emission, is given in terms of the currefity

ter embedded in, for example, an active waveguide, may be

calculated. Spontaneous emission into radiation modes has ~ ~ ~ .

previously been considered for passive multilayer dielectric ~ (P)= —f (30 E(r ) +EN(r ) Jo(r,t)y &, (2
structureq 12,53-58, and decay in the presence of passive

dielectric cylindrical structures has been investigated in RefSyhere the angled brackets- -) denote ensemble and time
[57-59. In the analysis of active fibers, the Green’s tensor is . ~ . .
calculated exemplifying the general formalism for calculat-2V€r29iNg, and(r,t) is the positive frequency part of the

ing Green’s tensors for the vector case. Another example ?Iectnc-fleld operator. The field is itself generated by the

. , . ransverse currents and satisfies the inhomogeneous wave
calculating Green’s tensors for active layered structures i

given in Ref.[50]. equation
The paper is organized in the following way. In Sec. Il the
model for spontaneous emission in active dielectric micro-
structures is given. The general principle for obtaining the . .
electric-field Green'’s tensor is given in Sec. Ill. Using this " the frequency domain. Helg = w/c is the wave number,
principle the transverse electric-field Green's tensor is de€ 1S the speed of light, angk, is the permeability, all for
rived for the case of active optical fibers in Sec. IV. PositionVacuum. The solution to Eq3) may be written as
dependence and transition-frequency dependence of sponta-
neous emission for the passive fiber is given in Sec. V. Ra- E(riw)= _iwﬂof G(r,r' ) j1(r';w)d3’  (4)
diation patterns obtained using a Poynting vector approach

for the active fiber are presented in Sec. VI. Our conclusion ) .
is given in Sec. VII. in terms of the classical Green’s tensa(r,r’;w). It is de-

fined as a solution to the equation

where (1) denotes

[—VXVX+K5e(r)]E(r;0)=—ioujr(r;o) (3

Il. MODEL FOR SPONTANEOUS EMISSION [-VXVX +k(2)s(r)]G(r,r’;w)=l5(r—r’), (5)

In this section we present a general Green’s tensor model . ) ] . .
for calculating the rate of spontaneous emission in a materig?here é is the Dirac delta function, antlis the unit 3<3
with a position dependent dielectric constastr). The tensor. We shall only deal with the retarded Green'’s tensor,
model allowse to be complex and thus to represent materialdim,_,, G(r.r"; @ +i€), which ensures a causal relationship
with absorption or gain. For simplicity, we trea(r) as a petweené(r,t) andj(r,t).
scalar. There is no problem in principle to Iefr) represent  |ngertion of Eq.(4) in Eq. (2) leads to
a tensor, and thus to include the case of birefringent materi-
als, but the notation will of course be less transparent. Our

model does require a complete set of biorthogonal modes.  (p)= ad

f(ﬂ(f;w)-{w’G(r,r’;w’)

The spontaneous emission in the material may be consid- (2m)?
ered as being generated by a distribution of spontaneous cur- o f s aas ,
rents. The positive frequency part of the current density is —wG(r',riw)}-jr(r';e’)) drdr’ de do’.
represented by an operafidr,t) in the Heisenberg picture. (6)

033812-2



GENERAL THEORY FOR SPONTANEOUS EMISSION IN . .. PHYSICAL REVIEW @4 033812

It is often convenient to drop the restriction that the currentsounting the emitted photons. However, if the dipole radia-
have to be transverse by instead using the double-transvertien is due to different processes than the processes that pro-
Green'’s tensoG+ defined by vide the gain, it may nevertheless be possible to verify the
expressiorn(12) experimentally. In the following, we present
theoretical method for calculatidg, and we demonstrate
Gr(r,r'; =j5Tr,r G(rq,rpw) 81y, r)dPryd3,. &  anH W
T(rrie) 1) Glry,rai0)- 4r(ra,r)dradry the method for the example of an optical fiber.

@)

The transverse delta functiofi(r,r’) is the operator that
projects an arbitrary vector function into its transverse part

[Il. CONSTRUCTION OF THE ELECTRIC-FIELD
TRANSVERSE GREEN’'S TENSOR

[26,61). The construction o is presented in Appendix B.  This section concerns the general principles for construc-
~ The spontaneous currents are assumed t6 berrelated  tion of the electric-field Green’s tens&(r,r’; ») defined by
in space and frequency, i.e., Eqg. (5). Instead of dealing with the wave equation in the

- -, ) ) form (3), it is convenient to introduce the vector function
(@) m(r";0")=2Dm (1) 8(r—r")27é(0—w )(,8) [26]

. - g(r)=e(r)E(r), (13
wherej, is thelth component of the current densityand
D, is the elemenml of the diffusion tensoD. The optical and to rewrite the wave equatid8) in terms ofg(r):
transitions that contribute to the spontaneous emission, and

therefore to the diffusion tensor, will also give a contribution 1 VX g(r) FR2g(r) = —i jt(r)

&sp to the dielectric tensor. The two tensors are related by the =75 o(r) oo T TR e

fluctuation-dissipation theorefd4] s(r) &(r) &(r) (14)
D=rhw’eonsgm(esp), ©  The argumento has been suppressed for simplicity. We will

i.e., the diffusion tensor is proportional to the imaginary partf'rSt derive the Green's tens@lg(r,r’) for o(r); by Eq.(13)

of &5,. The factorng, is the population inversion factor for tgﬁ];r?%nms tf;?éﬁéiro,rz ) for the electric field is then ob-
the involved quantum states, agrg is the vacuum permit-
thlty n— |/ | ’

The rate of spontaneous emissibni.e., the number of Glr.r")=Ve(nG(r.rve(r’). 39
spontaneously emitted photons per unit time, can now bgve define an operatdt acting ong(r) by writing the left-
obtained from the rate of energy dissipation by introducinghand side of Eq(14) asHg. The equation for the Green’s
Eqg. (8) in Eg. (6) and dividing the integrand by the photon tensorGy(r,r') may then be written as
energyf w. This results in the following simple expression
for I": HGy(r,r")=16(r—r"). (16)

210 5 The operatorH was introduced by Glauber and Lewenstein
I'=- m'm( J Tr{2D(r;0) - G(r,1;w)}drdw |, in their theory of quantum electrodynamics of dielectric me-
(10) dia [26]. For passive dielectric media with realr), the
operator is Hermitian, but it is non-Hermitiand{r) is com-
where “Tr” indicates the trace of the matrix product. We plex. The Hermitian conjugaté(’ is obtained fromH by
will focus on the case where a dipole emitter is localized ateplacinge(r) by its complex conjugate. In both cases we
ro, and the transition frequency is,. The diffusion tensor is can assume, that for each sef, (\,) of eigensolutions to

then given by Hgn=\n0n, there exists a set of eigensolutiorg, (\*) to

2D= wlpu’ 8(r —10) 278w — wo), 1y H "9.=\%gn, such that the biorthogonality condition
where u is the dipole vector, and the rate of spontaneous j [9,(N)]* - gn(r)d3r =N, 5 (17)
emission become82] " " nonm

2Mow(2) and the completeness relation

I'= Im[ ' Gr(ro,ro;@o) - pel. (12) ~

5 On(1)GH (1)
The expressioril2) allows us to calculate the rate of spon- n Np
taneous emission from dipoles, even if the dielectric material -~ . _
is a gain medium at the transition frequenay. In that case, ~are satified. Here, the asteriek denotes complex conjuga-
the radiation observed outside the material consists of ampliion. The eigenfunctio,(r) is denoted the adjoint aj,(r).
fied spontaneous emission from the dipole as well as amplifhe eigensolutionsg),, are degenerate, so the assignment of
fied spontaneous emission from the gain medium, and ththe adjoint solution is not unique, but it can be chosen such
spontaneous emission rdtecannot be determined by simply that Eqs.(17) and (18) are fulfilled. The actual choice may

=18(r—r") (18

033812-3
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be aQapted to the specific structure under co_nsidgration, a%e Se‘[an(f)ﬁ:] is the corresponding set of adjoint solu-
we will demonstrate for the example of an optical fiber. Thetions. It follows from Eq.(27) and Eq.(28) that the normal-
summation sign in Eq(18) represents an integration for the ;,ation factorM,, is given by

case of a continuum of eigensolutions and a summation for

discrete eigensolutions. Similarly, the symigq}, in Eq.(17) -

represents a Dirac delta function for eigensolutions in the Mn:_o'nf [hn(r)]* dn(r)dr. (29
continuous spectrum of eigenvalues, and a Kronecker delta

function for discrete eigensolutions. These considerations lead to a Green’s terG6r,r’;w),

By the completeness relatiofl8), the Green’s tensor which is the sum of two terms
Gy(r,r’) becomes
G= GGT+ GL y (30)
On(1)GH (1) : _
Gy(r,r')= 2 TN (199  whereGgr is the sum(20) over solutions to Eq21) and Eq.
n ntn (24). It is therefore generalized transverse, i%.:,(¢Gg7)

as can be seen by inserting B49) in Eq. (16). Equation =0. The other parG_ contains only longitudinal eigenfunc-

(15) finally leads to the expression tions, i.e.,
= e\ % V¢>n(f)[V&n(f')]*
En I’ En I' - = .
G(r,r';w)zZn ( )’El )\( )] 20 Gu(r.I;w) §n) Y. (31)

for the Green'’s tensor for the electric field. The electric 1‘ie|dHere we note that the field obtamed_ by inserting the Green's
B . . tensor(30) and any current density into E4) can always
E,=0,/\ is a solution to

be split into a generalized transverse part and a purely lon-
_ 2 _ gitudinal part. It is then seen using these fields and current
VXV XEtkoe(NEN=Ras(NE, @1 densities in Eq(3) that the current density must consist of a
purely transverse pajt with V -j:=0 generating the gener-
alized transverse field, and a pgg with VX (jg . /e)=0
_ ~ generating the longitudinal field. We also note, that by choos-
Nn=f [gn(r)]* - gn(r) d3r=f e(N[En(r)]*-Eq(r)ddr. ing (¢,,0,) to be a complete set of eigensolutions to Eq.
(22) (28), we ensure by construction that a curr¢iwith a lon-
gitudinal component in Eq4) will generate an electric field

andE,=g,/\e*. The normalization factoN,, is

The solutions to Eq(21) must satisfy the equation that satisfies the Coulomb equatiolV-(eE)=—iV
‘J/(weo).
kSV~[s(r)En(r)]=)\nV-[s(r)En(r)], (23 We shall only be concerned with the double-transverse

Green’s tensor Ed.7). Inserting Eq.(30) in Eq. (7) gives
so we have either
ENr)(EMNr)]*
n(~)( n[* )] - +5-1|-_GL6T’
n Apfe(r)[En(r)]*-En(r)dr
which describes field solutions in the absence of electric (32
charges, or els& -[¢(r)E,(r)]#0, and hence\n=k(2). In
the latter case, the eigenvalue problem reduces to

V. [e(r)E,(r)]=0, (29 Gy(r,r';m)=

where

VXVXEn(r):O, (25) E;I‘I-(r):f ﬂ(r,r’)‘En(r')d%', (33)

which has solutions of the form ) )
and E,, are the generalized transverse solutions to 2d)

En(r)=Vén(r), (26)  and Eq.(24). The transverse delta operatéf is given in
Appendix B. For reak, we haveEIz E,, 5’{GL5T=O and
where ¢,(r) are scalar functions. They have to fulfill the henceGr= Ggt, but this does not hold for complex In the
biorthogonality condition next section this general approach to the electric-field
double-transverse Green’s tensor is applied to the case of
active optical fibers.

f 61V o(1)- VD) Br=Mdom, (27
IV. TRANSVERSE GREEN’S TENSOR FOR THE ACTIVE

and this can be achieved by choosing,(r),o,] to be a OPTICAL FIBER
complete set of solutions to the eigenvalue problem for the
scalar wave equation In this section the general principles for the construction
of the electric-field Green'’s tensor, given in the previous sec-
V. [e(r)Vo,l=0,d,. (28  tion, is applied to the case of an active optical fiber. The
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Y where a represents the quantization indices. In a cylindrical
P B coordinate system the vectos(p) andG,(p) do not de-
i pend on the anglep, and therefore thep dependence of

/Cladding these vectors has been suppressed. The eigensolutions may
be divided into two types of solutions, which we refer to as
ol Y radiation modes and guided modes, respectively. For radia-
b [) L x tion modes, there are four quantization indicas

z

refractive
index n

={m,p,B,q}, wherep is the component of the wave vector
along thez axis, q represents the magnitude of the wave
vector perpendicular to theaxis, mis the angular momen-
tum, and the index is used to distinguish between two
™. Corediameter2a .~ degenerate polarization modes for giveng, andg.
In the first part of this section, we will consider the con-

tribution to the Green’s tensor related to radiation modes,

FIG. 1. lllustration of the circular step-index optical fiber with 514 then come back to the contribution related to guided
core refractive indexn,, cladding refractive index,, and core modes at the end of the section.
diameter 2. A Cartesian coordinate system,y,2) is introduced The substitution of Eq(34) into the eigenvalue problem
with the origin placed in the center of the fiber core, and with the(21)’ leads to the following differential equations for tae

flper oriented along the axis. The position of a point source is component of the electric field for the optical fiber
given by (p,$,2).

\ refractive
\ indexn,

2

. . . . . . 2 (9 FZ,a aFZ,a 2 2 _
details of the calculation is given in the Appendices. (kp) > T Kp +[(kp)*—m?]F, =0, p=a,
A schematic of the circular step-index optical fiber is d(kp) d(xp)
shown in Fig. 1. The structure consists of a circular core 7 e
region with refractive indexn; surrounded by a cladding P 2, z,a 5o o .
region with refractive index,. The diameter of the core is (@p) a(qp)? qupa(qp) THAp)" M, 0 =0, p=a,
denoted 2. The extent of the cladding region is assumed to (36)

be infinite. A Cartesian coordinate system(,z) is intro-

duced with the origin in the center of the fiber core. The fibetwhere
is oriented along the axis, and the position of a point source 2 o 2
is given in cylindrical coordinates byp(¢#,z). The sponta- k*=(Ko=ho)er =B

neous emission depends on both the position and the orien- 22 (K2 )\ )e,— B 37)
tation of the dipole vectop. In this paper we will consider q 0" Na)o2 ™ B

spontaneous emission for emitters oriented alongzt®'s,  Here ), is the eigenvalue of the eigensolution with quanti-

and for emitters oriented in they plane. In the latter case, ,ation indicesa andslznf and s,= n% represent the di-
we will be interested only in the average emission for dipole,

, ¢ oS electric constant in the core and cladding of the fiber, respec-
vectors oriented along the_ two in-plane directionandy. _tively.
The total spontaneous emission for these two types of orien- 5 radiation modes, eigensolutions exist for all combina-
tation of the generating currents depends only on the radius iy ofm, 8, andg. By applying the boundary condition that
due to symmetry considerations. the field amplitude must remain finite, both in the core and

The formalism developed in Sec. Il for calculating the cladding, thez component of the two fields, and G, may
transverse electric-field Green's tensor requires that the gemys \ritten in the form « “

eralized transverse eigensolutigns, ;E,(r)] of Eq.(21) are

obtained. A dm(kp), p=a
Taking advantage of the circular symmetry of the problem FzalP)=) ~+ 1) @)
we will quantize the eigenfunctiong,(r) in cylindrical CaHm(ap) +CHn(ap),  p>2a (39)
wave functions. Generalized transverse solutions may be
constructe;j tl)()j/ mtroducmg both tge ele?tni: fidgd anithe 6. [BaJm(KP), p<a
magnetic fieldH, given H,=VXE,/(i , Where op)= -
magnetic fieldrn given By Hy= V> Eq/(lono) 2P = D IHO (qp) +DH (ap), p>a
w;,=w"—\,c%, and requiring the tangential components of (39)
both fields to be constant across the interface between core
and cladding. The other components, ,, F, ., G, o, andG, , may be
The eigenmodek,, and the corresponding field$, may exprefssed in terms df, , and G, , by using Maxwell's
be quantized in cylindrical wave functions in the form equationg62].
In the above equationd,, is the Bessel function of the
: : ; i 1) H©@ i
E(p,b.2)=F (p)eMbeh?, (34) first kind of orderm, andH};,’, H;’ are the Hankel functions

of the first and second kind of orden. The boundary con-
o ditions, which requireF, ., Fy 4, G4, and G, , to be
H(p,$,2)=G(p)eMPe'F?, (35 continuous across the core-cladding interface, result in four
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linear equations from which::;, D+, andD, are whereZv:{—m,p,—,B,q}. It is clear that with this definition

given in terms ofA, andB,,. For each set of indice8, 0,  E, is a solution to the complex conjugate of E@1), such
andm, the polarization index labels two linearly indepen- thatHTEJa:hZ@a for g, = \a* E,. The reversion of angular

dent choices ofA, and B, . A calculation of the relations momentum @—s —m) and the direction of propagatiors(

- ©Cc. D! =

between the coefficien®,, B,, C,, C, , andD, — — ) are chosen to satisfy the biorthogonality condition

and a construction of a blorthogonal set of radla'uon mode5(17)

is given in Appendix A. 3 5 The part of the generalized transverse Green'’s tensor re-
We define the adjoint solutiort, to be E,=(E;)*, lated to radiation modes, may now be constructed, i.e.,

GEr,r'";0)=
m,

iw im gFa(p)Falp’)exdim(o—¢')lexdiB(z—2")] dgdq, (40)

q=0 a(k082 B —q )

©

where the normalization factdt, and the biorthogonality of imaginary part of the principal-value integral. However, for
radiation modes, are given by passive structures the calculation is greatly simplified, since
in this casee,F (p)Fz(p)/N, is real, ar(lij) the principal-
== 3, _ Y " value integral does not contribute to I@g(r.r;w+ie)],
f e(NEWN)-Ea (NAT=Nadmm opp 8B=F") (A =0")- which is the term appearing in expressid®). In the second
(41)  term of Eq.(45) the angled may be interpreted as the off-
axis angle of propagation for light emitted into radiation
modes, and accordingly the expression has the form of an
integration over an off-axis angular radiation pattern, where
the radiation patterh(#9) is given by Eq.(46). This interpre-
tation is, however, only valid for passive structures, since
I () may become negative for certain angles for active struc-

Here,a’' is short-hand notation fo’ ={m’,p’,8’,q'}.

The expressiornt40) is valid not only for passive fibers,
but it may also be used for fibers with gain and/or absorp-
tion. The expression may be simplified by introducing two
new parameterk and 6 related toB andq by

B=k cosb, (42)  tures. Asimilar simple calculation of radiation patterns is not
possible via Eq.(45) for active structures. In this case a
q=ksiné, (43) calculation of physically meaningful radiation patterns must
take into account amplification and absorption, which is pos-
and by taking advantage of the identity sible by calculating radiation patterns using the Poynting
vector. Radiation patterns for active structures are considered
1 —Pl—' s 44 inSec. VI
X+ie = X H&(x), (44) The expression$34), (35), (36), and(37) are also valid

for guided modes, whergis now a complex parameter with
whereP refers to the principal value. The Corresponding re-g positive imaginary part |eading to exponentiai decay) in
tarded Green’s tensor, takenratr’, may then be written  of the amplitude of the eigenfunction. In this case the eigen-
(1) functions are restricted to propagation only along zteis,
H(rriotie) and the degrees of freedom have been reduced relative to
7 e,F (p)Falp) i _radiation modes. Thereforg, andq can no longer be cho_sen
i i ——————kdk db independently of one another, and only three quantization
k=0 indices a={m,n, B} must be summed over. We follow the

6=0N 4(k3e,—k?)

(7 _ usual convention and replageby the variabley=—iq. The
=i L:O'(é’)smed 0, (45  zcomponent of a guided mode may then be written as

Adm , <a,
Fz,a<p>=i anlp), - p=a 47

where

7 < (eoFulp)Filp) Coltnlyp). =2,
I(H)ZEE N,sin6 ' (46)
m « k=kg\/e5

For a fiber with absorption or gain in the core regibut not
for a passive fibgrthe principal value integral taken at
=r’ does converge, and this is true for both the imaginanHereK,, is the modified Bessel function of the second kind
part and real part of the integral. The modeling of spontaneef orderm. As is also the case for radiation modes, the co-
ous emission in active fibers requires a calculation of theefficientsA,, B,, C,, andD, must be chosen so that the

Bum(kp), p=a,

GZ""(p):iDaKm( ¥p), p>a. 49
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boundary conditions are satisfied. Due to these conditionsific modes, in this case, due to the existence of a complete
the allowed values fory become functions ofx, i.e., y  set of orthogonal eigenmodes. In the following section we
=1v,. Furthermore, each modm,n only exists for|g| will then consider physically meaningful radiation patterns
=Bmnnc, WhereBp, ¢ is a cutoff propagation constant such for active fibers, taking into account the effect of gain and
that Refy,) =0 for |B|=Bmn.. Here, we choose to use real absorption.

propagation constanf, and accordingly the eigenvalugg The passive fiber under concern, is defined by a core re-
become complex. We will not go into a detailed derivation offractive index n;=1.45, a cladding refractive index,

the guided modes of the fiber here, as this is a topic that has 1.43, and a core radiws=2 um. The emitter is located at
been studied extensively in the literatuisee, for example ro=(pg,®9,Zg) in the fiber. In order to properly normalize
Refs.[63,64]). The contribution to the Green’s tensor from the spontaneous emission, we will introduce the spontaneous

the guided modes may be written emissionI'y,,, from an emitter in a passive homogeneous
- dielectric material with the same refractive index as the core
Gg(r.r'; o) of the optical fiber, i.e.,
_ f goFo(p)Fa(p')ePz2)gmé—¢ )d,B ro wg,u?m 52
m.n J[B1=Bmnc Na(kgsz-l-'yi—ﬂz) hom hgoc337r,
(49)

whereu is the norm of the dipole vectqe. This expression
is easily obtained using Eq@12) for the case of a dipole at
positionpy=0, and dipole orientation along tlzeaxis, or by
using the results for homogeneous dielectrics given in Ref.
[32].
NaOmny 5nn/5(,3—3')=f e(NEy(r)-Eg(r)d3r. An example of the position dependence of the spontane-
(500 Ous emission for an emitter with transition wavelength
1560 nm in the core of the fiber, is shown in Fig. 2 for the
As was also the case for radiation modes, the imaginary padase of dipole orientation along tlzeaxis (I';) and for the
may be greatly simplified for passive structures by takingaverage over the two in-plane dipole orientationandy,

where a={—m,n,— 8}. The normalization factoN, and
biorthogonality relation for guided modes are given by

advantage of the identit{44), i.e., i.e., ' =(I'y+I'y)/2. The spontaneous emission averaged
_ over all dipole orientations is given dy=(I',+I'y+1',)/3.
IM(GEH(r.1;w+i€)) The spontaneous emission into radiation modes clearly
shows a modulation with position in the fiber, which may be
__ 772 ’ e2Fa(p)Falp) explained as a cavity effect. The periodicity, in the spon-
mn d ' taneous emission with position in the fiber core due to con-
2 2
Na@(ﬁ ~Ya") , structive destructive interference arising from reflections at
B v’ =kge2 the core-cladding interface, should be roughly equal to one-
(51) half wavelength in the medium, i.e.,
Here, the prime means that only modesn with |8 .| Apo Ao 53
<Kkq+/e, should be summed over. a 2an;’

The generalized transverse part of the retarded Green’s
tensor may now be obtained as the sum of the two contribuErom this expression, we obtain the periodicilyp,/a
tions given in Eqs(40) and (49) The double-transverse ~0.27. From the total emission for emitters WIZh:IIpOIe
Green’s tensor may be obtained by replacing the generalizedirection[see Fig. )] the distance between local maxima
transverse fields in the numerators of EG) and (49) by  or local minima is in the range from 0.26 to 0.28.
the transverse part of these fields. A method for calculating Almost no spontaneous emission goes into guided modes
the transverse part of the generalized transverse fields ?gr the case of dipole orientation along thexis. This is due
given in Appendix B. For fibers with re|ative|y weak index to the electric field of the fundamental gUlded mode of the
contrast, the difference between the generalized transver&ptical fiber having a negligible field component along the
and the usual transverd@6,61] Green's tensor is almost axis, i.e., the electric field is primarily in they plane. Emis-
negligible. However, this may not be the case for dielectricsion into radiation modes for dipole orientation in tkg
structures with high index contrasts such as those investplane is clearly lower compared to the case of dipole orien-
gated by, for example, Dodabalapefral. [65]. tation along thez axis. This is due to part of the spontaneous
emission being captured by the optical waveguide. From the
total spontaneous emission into both guided modes and ra-
diation modes, we see that the total spontaneous emission is

In this section we will evaluate the spontaneous emissiorlose tol'},,, for all positions. Therefore Fig.(B) also gives
going into radiation modes and bound modes for a passiva good estimate for the spontaneous emission factor, i.e., the
optical fiber. Only for passive fibers is it really meaningful to fraction of the spontaneous emission going into the guided
consider the fraction of spontaneous emission going into spanodes of the optical waveguide. The decrease in the total

V. SPONTANEOUS EMISSION IN A PASSIVE FIBER
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FIG. 2. Spontaneous emission as a function of position for an
emitter in the core of a step-index fiber with core refractive index
n,;=1.45, cladding refractive inder,=1.43, and core radiua
=2 pum. The emission wavelength }=1560 nm.

(c) Total

FIG. 3. Spontaneous emission as a function of normalized fre-
quency for an emitter located in the center of the core of a step-
index fiber withn;=1.45,n,=1.43,a=2 um.

spontaneous emission near the core-cladding interface, m&yientation, i.e., the tangential electric-field components are
be explained from the fact that the spontaneous emission ifonstant across the interface, whereas normal components
homogeneous dielectrics scales with the refractive iideg  differ by the factomi/nj=1.03.

Eq. (52)], and emitters close to the core-cladding interface Figure 3 shows the spontaneous emission as a function of
are affected by the presence of a material with a lower renormalized frequency/ =kya JnZ—n3 for an emitter in the
fractive index. The total emission near the core-cladding incenter of the fiber corepp=0). Also, in this case, the peri-
terface is clearly different for the different dipole orienta- odic oscillations, seen in the spontaneous emission, is due to
tions. This may be explained from the fact that the boundargonstructive destructive interference arising due to reflec-
conditions at the core-cladding interface depend on the fieltions at the core-cladding interface. The oscillations in the
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- whereR is the position relative to the sourde=|R|, andS
Z is the Poynting vector, which for large distanéeseduces to
\ R PN
0 /i S= 2 eonac(E"-E). (55)
The emission rate into radiation modes per unit solid angle
: y dQ is given by
T im LisRR? 56
X da = Jim ——|S(R)|R". (56)
¢

~— Note that this expression only equals g$montaneougmis-

FIG. 4. lllustration of an optical fiber oriented along thaxisin ~ Sion for passive structures, since for the case of amplifying

a Cartesian coordinate system,y,z). Two angles@ and ¢ are  Of absorbing structures, the spontaneogsly emi.tted light has
introduced. been amplified or attenuated by the active medium.

The electric field at large distances is given in terms of the

total spontaneous emissigRig. 3(c)] are clearly larger for Green's tensor and generating currents by

emitters oriented along theaxis. Emitters with this orienta-

tion emit pr|rr_1ar|Iy in thexy plane, anc_i mt_erference effects E(R):j f G(R,r’;w+ie)~[—iuowa(r’)]d3r’.
due to reflections from the core-cladding interface are there-

fore more pronounced. Emitters placed in the center of the (57)

waveguide .W'th dlpole orientation in they plane are only According to this equation, and the properties of the Green'’s
allowed to interact with modes having angular momentu

—+1. The fund tal fib de starts to b local ensor, the transverse currents generate a generalized trans-
'm_d_f - 1he ulr_l a(;n?na ! gré;np ?st;alrs ?L _(Ia_ﬁome 0Calyerse electric field. However, only the transverse component
1z€d Tor normalized 1réquencies Just below L. TNere are - ot ha e fields contribute to the rate of spontaneous emission.
also guided modes with angular momentur that become

. At large distances from the fiber, the longitudinal component
allowed for V=4. Around both frequencie¥=1 andV g g P

. . ._of the electric field is negligible, and the field at such a
=4, a strong decrease is seen in the spontaneous emissigiitance is transverse.

going into radiation modes for in-plane dipoles. This is cOm- g4 yhe case of delta-correlated currents, the amplitude of

pensated by a corresponding strong increase in the spontangy eectric field squared at positiéngenerated by the trans-
ous emission into guided modes, and the total rate of spon;,

L o ; erse part of a dipole current at positiog with dipole ori-
taneous emission is oscillating with frequency arolipg,,. : IS
Do . .__entationg, is given by
The spontaneous emission into guided modes for emitters
with dipole orientation along the axis, starts at normalized <E(R)T_ E(R))
frequencies aroun¥~2.4. This frequency corresponds to

the single-mode cutoff of step-index optical fibg&2]. 2

=u3w4,u2fG(R,r';w)'ﬁr(r',ro)~ed3r’

VI. SPONTANEOUS EMISSION ANGULAR RADIATION (58)
PATTERNS

and the spontaneous emission per unit solid angle in the
direction given byR, may in the limit of large distanceR
=|R| be written

The emission of radiation from active dielectric micro-
structures, will in general differ from the spontaneous emis
sion due to the amplification or absorption of light. In this
section we will present radiation patterns for active optical dr 3 2 \/—
fibers, taking into account the effect of the active material —-_ _ @ & V&2, . f G(R,I'";w)- 8 (r',rg)-d3’

) . s o) -&Q°T
using a Poynting-vector approach. dQ  figec®  Row

In Fig. 4 the optical fiber is oriented along thexis in a (59
Cartesian coordinate systers,y,z). Two anglesé and ¢ _ ) _ _
are introduced. The angular radiation pattern is defined as tHeor @ gain medium, the expressit0) only gives the am-
radial emission per unit solid angle as a function of the di-Plified emission from the dipole at. We ignore the ampli-
rection given by# and ¢. In evaluating the angular sponta- fied spontaneous emission from thg gajn medium itself. The
neous emission pattern in a rigorous way, we may note thatatter can be included by calculatifg- E), using Eq.(57)
far away from the active fiber, the power flux is radial, andand the correlation relatio(8).

2

the power fluxd P per unit solid anglel() may be written in For large R, the electromagnetic field behaves as a plane
the form wave with the wave numbég\/s,= 8%+ g2, and the mag-

nitude of 8 andq is determined from the off-axis angteof
d—P=R2|S(R)| (54 the vectom, i.e., B=kg\/e, cosh andq=kg/e, sin 6. With
dQ ' this restriction imposed o, g, and using the notation for
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Emitter in center of core T N

(2) n;=1.45-10.003

(b) n;=1.45+i0.003

FIG. 6. Spontaneous emission as a function of the off-axis angle
for an emitter at the edge of the core of a step-index fiber with
=2 um,n,=1.43 and(@ n,=1.45-i0.003,(b) n,=1.45+i0.003,
--=" and forhy=1560 nm.

FIG. 5. Spontaneous emission as a function of the off-axis angle

for an emitter in the center of the core and an emitter at the edge dif-axis anglesd, the radiation pattern is clearly modified
the core of a step-index fiber with,=1.45, n,=1.43,a=2 xm, '€lative to the case of a homogeneous dielectric medium

and fory=1560 nm. (I'y+ Fyoc1+co§6). The radiation patterns, shown in Fig. 5,
are characterized by a peak for a small off-axis arglés

radiation modes in Sec. IV, a general expression for the arthe transition wavelength decreases and approaches the cut-

gular emission pattern for active fibers generated by currentff wavelength for the next guided mode, the peaks will

at position g, ¢o,2o) is given by grow larger and the peak angle will move toward 0. As the
wavelength drops below the cutoff wavelength, the peaks
dr w3,u2\/s_22 (27)2 being nearly parallel to the axis will disappear, and a new

a0 hecd  Kle.sito guided mode will appear. This explains that although abrupt
£o 082 changes with frequency is possible for the emission into ra-
F, ;T(po)eim(qsfxbo)‘Z diation modes and guided modes, a similar abrupt change

x| |> cleimm2) should not be expected in the sum of emission into radiation
m.p Na ‘ modes and guided modes. This is also in agreement with the
o A F=T(p )eim(¢—¢0)‘2 results shown in Fig. 3. _ _
+1D A /_Dzefl(mw/Z) he W70 . Figure 6 shows a similar calculation of the angular emis-
mp V€082 N ‘ sion patterns averaged over the angléor the case of emit-

(60) tersat the edge of the fiber core for the cases of fibers with
. ' amplification and absorption. Clearly, by comparing Figs. 5
Here, F; 3'(po)e” 'M?oe~ 'A% is the component of the field and 6, the effect from absorption in the fiber is a reduction in
EZ'(ro) in the directiong , corresponding to the orientation the peaks seen for small angles in Figh)5and the effect of
of the dipole vector. Note that the emission per unit solidgain is that these peaks are enhanced. The effect of an active
angle Eq.(60) depends on both anglésand ¢, whereas the medium will be most pronounced for small off-axis angtes
radiation pattern Eq46) does not depend op. where the emitted light will interact with the active material
Figure 5 shows a calculation of the off-axis angular sponfor a longer time and over longer lengths. Consequently, the
taneous emission pattern E§0) averaged over the angte  amplification of spontaneous emission from in-plane emitters
for an emitter in the center of the fiber core and at the edge ofl’x+I'y) will be more efficient compared to the case of
the fiber core, respectively, for a passive step-index fibeemitters directed along the axis (I';). The spontaneous
with core refractive index 1.45, cladding refractive index emission, as a function of position into radiation modes for a
1.43, and core radius Zum. The results presented in this passive structure, was given in Fig@® In this case, the
figure may also be obtained directly using the off-axis anguemission for in-plane emittefd”, = (I'y+1I',)/2] is clearly
lar radiation pattern given in E@46). In fact, for a passive lower for all positionspy<a compared to the case of
fiber, the sum of expressiof60) integrated over all solid z-directed emittersI(,). As was the case for Fig. 5, the Fig.
angles and the corresponding contribution from guided2(a) may also be obtained by integrating E&0) over all
modes, will equal the expressidf2). The transition wave- solid angles. The physically measurable emission into radia-
length of the emitter is 1560 nm. The radiation pattern fortion modes must reflect the effect of amplification or absorp-
emitters oriented along theaxis (I',) closely resembles a tion for structures with an active medium. Figure 7 shows the
figure eight [, sir?g), which is the radiation pattern gen- measurable emission into radiation modes as a function of
erated by a dipole in a homogeneous dielectric medium. Pagosition p, for a fiber with gain. The emission for both the
of the radiation generated by emitters oriented in #ye  considered orientations of the currents has increased relative
plane, is captured by the optical waveguide, and for smalto the spontaneous emission in the corresponding passive
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106.5 ' - , - microstructures. The fully vectorial method is based on the
classical retarded electric-field Green’s tensor, giving the re-
lation between the quantum-mechanical operators for the
electric field and the generating currents. Taking advantage
of the currents related to spontaneous radiative decay being
transverse currents, allows a formalism, where only the
double-transverse Green’s tensor needs to be calculated. The
double-transverse part of the Green’s tensor thus becomes a
key ingredient in the model for spontaneous emission. A gen-
eral approach was given for the construction of the Green'’s
tensor for active dielectric microstructures. This approach
does not rely on the existence of a complete power orthogo-
nal set of electromagnetic modes, and is therefore valid for
dielectric structures with absorption and/or amplification.
The method for spontaneous emission was applied to a
fiber amplifier, and as a first step the Green’s tensor for this
FIG. 7. Emission into radiation modes as a function of positionStructure was calculated. One of the terms in the calculated
for an active fiber withn,=1.45-0.003 (gair), n,=1.43, a=2 expression for_ the eI_ectrlc—fleId Greens_ tensor was inter-
um, and forxy=1560 nm. preted as an integration over an off-axis angul_ar_radlatlon
pattern, and agreement has been found with this interpreta-
fiber, and the emission from in-plane oriented emittdis)(  tion and the radiation patterns calculated using the Poynting
has been amplified more, relative to the case-dfrected vector. A similar interpretation of the expression for the
emitters (",). For both orientations of the emitter, the am- Green’s tensor for fibers with gain or absorption is not pos-
plification is clearly larger for emitters in the center of the sible, since a physically measurable radiation pattern must
core (pp=0) relative to emitters at the edge of the coretake into account the amplification or absorption of sponta-
(po=a). neously emitted light due to the presence of an active me-
For active fibers, where the distribution of active materialdium. A Poynting-vector approach has the advantage that
is a function of the radiup only, averaging over the angle  radiation patterns that depend on both the off-axis angle and
is reasonable. However, the Poynting-vector approach dodke azimuthal angle, may be obtained.
allow the dependence on the anghe relative to the angle For a passive fiber, the expressions for the relevant parts
¢, related to the position of the emitter, to be taken intoof the Green’s tensor become particularly simple, and for
account in the radiation patterns. An example is given folpassive fibers the spontaneous emission going into radiation
¢—¢o=0, 7 in Fig. 8 for a fiber with absorption, a passive modes and guided modes was studied. Although the emission
fiber, and a fiber with gain. The emitter is placed at the edgénto these two types of modes is clearly different, and also
of the core. The radiation patterns are clearly asymmetric dugepend on the orientation of the generating currents, the sum
to the asymmetric position of the emittgrd 0). The effect  of these two contributions oscillates closely around the rate
of amplification or absorption is strongest fdr—¢o=m, 4 spontaneous emission for a homogeneous dielectric me-
since this direction corresponds to the opposite side of thgjm with the same refractive index as the fiber core. The
active fiber relative to the emitter. Also, in this case, theqgiations observed with position and frequency are ex-
peaks obsderved forscsmall ?gf-aX|§tﬁngI§eﬁ)rba past_slve fiber,  plained as a consequence of destructive and constructive in-
increaseddecreasgsior a fiber with gain(absorptiof. terference due to reflections from the interface between the
VIl. CONCLUSION fiber co_re_ano! claddir_lg._ Abrupt changes vyith frequency in
the emission into radiation modes and guided modes were
In conclusion, a general method has been developed fasbserved at frequencies where new guided modes appear.
the modeling of spontaneous emission in active dielectriGimilar abrupt changes with frequency are not observed in
the sum of these two contributions. This was explained from
radiation patterns calculated using the Poynting-vector ap-
proach, where strong peaks, being nearly parallel to fiber
axis, exist just before the next guided mode appears. The
peaks disappear as the new guided mode appears.
The effect of an active medium on the radiation pattern is
strongest for emission propagating at small off-axis angles.
In particular, the peaks transforming into a new guided mode

%3 %b as the frequency increases, are enhar(eg@nuatef for a

core region with gair(absorption.
(b) n;=1.45-i0.000 (¢) n;=1.45+i0.003
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APPENDIX A: BIORTHOGONALITY AND
FIG. 8. Spontaneous emission as a function of the off-axis angle NORMALIZATION OF RADIATION MODES

for an emitter at the edge of the core of a step-index fiber with
=2 um, n,=1.43,(a) n;=1.45-i10.003,(b) n;=1.45+i0.000,(c) This appendix concerns the relations between the coeffi-
n,;=1.45+i0.003, and foi,=1560 nm. cientsA,, B,, C.,C,, D, ,andD_ in Egs.(38) and(39)
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for a given set of quantization parametenss, andg, and  dent solutions. These two solutions must be chosen so that

we will use the notation introduced in Sec. IV. Due to thethe biorthogonality requirement
boundary conditions at the core-cladding interface, these co-
efficients are not independent. Furthermore, in this appendix, - 3, _ o o
a biorthogonal set of radiation modes is constructed, and #(NEa(1)- Ear (Nd*r =Nadmn Sppr 5(A= ") 5(A=0")
normalization integral for the modes is calculated. (Al12)
The relations betweeg,,, C,, D, D,, andA, and o o _
B, may be expressed by first introducing a number of conis satisfied. Similar to what was reported in RE#6] for
stants dielectric waveguides, all finite terms resulting from the in-
tegration in the fiber core, will cancel with each other. The
Y @) @) (1) B 4i singular terms that give rise to the Dirac delta functions,
T=Hn"'(qa)Hny“(qa)—Hy""" (qa)Hn " (qa) = wqa’  'esult only as the integration limits tend to infinity. Taking
(A1)  advantage of the cancellation of finite terms, we need only
identify the factorN,, in front of the § functions. Thereby,
B B2+ qle,—s, the evaluation of the integral in EA12) is aided signifi-
K,=i=mJ,(xa)H,?(qa) ——» (A2)  cantly by taking advantage of the following limiting forms of
a g2 «k°q the Hankel functions:

B B +a°e,— ey 2
K,=i =mJ.(xa)H,‘Y(ga —~—— (A3 (1) | _E di(ap—mml2— i) <
2= i MIy(ka)Hm (g )\ 2 < (A3) H®(gp) —— P . p>1lg, (A13)
1 ' (2) 1 (2)r 2
M1:;Jm(Ka)Hm (qa)—aJm(Ka)Hm (qa), Hg)(qp)%1/W_qpe—i(q;)—mwQ—WM)’ p>1/4.
(A4) (A14)
1 1 . .
M2=;Jm’(Ka)Hm(1)(qa)_ a\]m(Ka)Hm(l)’(qa)’ Straightforward calculations then lead to
(A5) oo
j [Falp)-Fa(p)],_, pdp
€1 €3 =0 ﬁ:ﬁ'
Ly=- ' (ka)HnH(qa) — = In(xa)Hn'*" (qa),
(A6)

=LH(qq’+BZ)C*C
qq’Vaqg’ o

Lo="230' (k@) HpP(qa) ~ = J(xa)H D' (q2) "
K m qg " ' 0 I APy el U [ ,
— + + , -
(A7) oon, (B TAN(B+aD,D,, |57 (a-q")
where here () denotes the derivative with respect to the B N
argument. +(aq"+B)C,Cyp
In terms of these constants, the relations betwAegn
B., C., C,, D}, andD_, obtained from the boundary _ M0 Az amn -t | s (a—a’
conditions, may be written 8082\/(,8 FANBHAIDLD, |5 (a0
X (—1)™+non-singular terms, (A15)
+ 4
Caz_(AaLl+MOCBaK1)1 (A8)
T82
where
C‘=L(A Lo+ moCBlK>) (A9) 1 (=
CTqeg, e HOTReRRl 5i(q—q’)=ﬂf & e (M19)
o=
q ! ! — ’
10CD 4=~ T (AK1—1oCBM ), (A10)  Note thats(q—q')=6"(q—q')+ 6 (a—q').

The polarization indiceg, p’ represent a specific choice
of the sets of coefficient®n,, B, and A, , B, for a
(A11) ={m!p.,,8,q} .and o' ={m,p’,B,q}. A ponvenient choiqe of
coefficients isA,=1, Ay =1, B,=in, and B,=—in,
sincex can be chosen in such a way that the two polarization
Clearly, only two coefficients are linearly independent, andmodes are biorthogonal. The requirement for two modes to
the indexp will be used to label two such linearly indepen- be biorthogonal is obtained from EGAL5), i.e.,

_ q
HmoCD,=— T—*(AaKz_ #oCBM>).
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W|th V. FT:O andVX(FGL/S):O.

+o- M0 sy et - H0 p-pt = : : : .
C.Cu soszD“Da’ C.Cu 8082DaDa, 0. By inspection one can easily verify that
(ALD) e(NVba(r) [~
. . . FoL=2, —f [Vn(r')]*-F(r)d%,
Using Egs.(A8)—(A1l) biorthogonal modes are obtained for n M
(B2
K{Ko,—L L
2_F0f2 E2R1R2 5 172 (A18) where¢, andM,, are given by Eq(28) and Eq.(29). The
Ho g,K1K,—e5M M, expression obviously satisfies the condition fey /e being

longitudinal, and the completeness of the solutions to Eq.

For a homogeneous dielectric medium with dielectric con-(28) ensures thaE—Fg, is transverse. Hence

stante,, the equation(A18) reduces to the well-knowry
=X \egea/ po. orfF=Fr=F—Fg_, (B3)
The normalization factoN, is obtained from Eq(A12)

and Eq.(A15), i.e., and
24 g2 + _ _ Van(r)
No=ep2mal —Flcrc - *pip-f_qym SFN=F(N-2 —%
q3 o o 8082 o o n n
(A19)
><J[S(W)V¢nu'n*-ﬂﬁnd%’. (B4)
APPENDIX B: THE TRANSVERSE DELTA OPERATOR o7
FOR NONHOMOGENEOUS DIELECTRIC MEDIA In the case of a passive structureal ) we have
This appendix concerns the construction of the transverse b‘;En= EI= E,, (B5)

delta operators; related to a dielectric constaa(r). It is q
defined as the operator that projects an arbitrary vector field"

F(r) onto its transverse componeRt(r), i.e., &tF=F+, 5¥V¢n=0 (B6)
where
for a generalized transverse fidil and for any solutionp,,
F=Fr+FgL (B1)  to Eq.(28). For Eq.(32) this implies thatGr=Gg1.
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