740 research outputs found

    Nanostructures in Ti processed by severe plastic deformation

    Get PDF
    Metals and alloys processed by severe plastic deformation (SPD) can demonstrate superior mechanical properties, which are rendered by their unique defect structures. In this investigation, transmission electron microscopy and x-ray analysis were used to systematically study the defect structures, including grain and subgrain structures, dislocation cells, dislocation distributions, grain boundaries, and the hierarchy of these structural features, in nanostructured Ti produced by a two-step SPD procedure-warm equal channel angular pressing followed by cold rolling. The effects of these defect structures on the mechanical behaviors of nanostructured Ti are discussed

    Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys

    Get PDF
    Diffraction peak profile analysis (DPPA) is a valuable method to understand the microstructure and defects present in a crystalline material. Peak broadening anisotropy, where broadening of a diffraction peak doesn’t change smoothly with 2θ or d-spacing, is an important aspect of these methods. There are numerous approaches to take to deal with this anisotropy in metal alloys, which can be used to gain information about the dislocation types present in a sample and the amount of planar faults. However, there are problems in determining which method to use and the potential errors that can result. This is particularly the case for hexagonal close packed (HCP) alloys. There is though a distinct advantage of broadening anisotropy in that it provides a unique and potentially valuable way to develop crystal plasticity and work-hardening models. In this work we use several practical examples of the use of DPPA to highlight the issues of broadening anisotropy

    The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel

    Get PDF
    The influence of martensitic microstructure and prior austenite grain (PAG) size on the mechanical properties of novel maraging steel was studied. This was achieved by looking at two different martensitic structures with PAG sizes of approximately 40 µm and 80 µm, produced by hot rolling to different reductions. Two ageing heat-treatments were considered: both heat-treatments consisted of austenisation at 960 °C, then aging at 560 °C for 5 h, but while one was rapidly cooled the other was slow cooled and then extended aged at 480 °C for 64 h. It is shown that for the shorter ageing treatment the smaller PAG size resulted in significant improvements in strength (increase of more than 150 MPa), ductility (four times increase), creep life (almost four times increase in creep life) and fatigue life (almost doubled). Whereas, the extended aged sample showed similar changes in the fatigue life, elongation and hardness it displayed yet showed no difference in tensile strength and creep. These results display the complexity of microstructural contributions to mechanical properties in maraging steels

    Two-layer laser clad coating as a replacement for chrome electroplating on forged steel

    Get PDF
    Chrome plating is one of many surface engineering techniques used for corrosion resistance, as well as a protective coating against surface damage in load bearing applications, with surface hardness in the region of 1000Hv. Laser cladding is an alternative hardfacing technique often chosen for corrosion resistance and for increasing the surface hardness of components, through thick clad coatings. The application of chrome plating and other similar surface engineering techniques for thick coatings can be inefficient and costly with practical process limitations. The objective of this case study was to investigate the feasibility of replacing the chrome plated layer of a rod mill pinion, made of forged steel, with a Nickel-based Tungsten-Carbide (Ni-WC) composite layer and an intermediate layer of Inconel 625. Mechanical properties were obtained using microhardness and nanoindentation techniques. Three-point bend tests were performed on test specimens from a pinion sample, in order to observe crack propagation resistance, a challenging task due to the curved geometry of the pinion sample and the difference in thickness between the existing and proposed coating layers. Crack development was captured, and plastic deformation was quantified with the use of Digital Image Correlation (DIC). In bending it was found that the bond between the composite coating, Inconel 625 and the steel substrate provided improved resistance to axial crack propagation, where the composite coating could withstand more than twice the bending tool displacement than the chrome electroplating

    The Effect of a Two-Stage Heat-Treatment on the Microstructural and Mechanical Properties of a Maraging Steel

    Get PDF
    Maraging steels gain many of their beneficial properties from heat treatments which induce the precipitation of intermetallic compounds. We consider here a two-stage heat-treatment, first involving austenitisation, followed by quenching to produce martensite and then an ageing treatment at a lower temperature to precipitation harden the martensite of a maraging steel. It is shown that with a suitable choice of the initial austenitisation temperature, the steel can be heat treated to produce enhanced toughness, strength and creep resistance. A combination of small angle neutron scattering, scanning electron microscopy, electron back-scattered diffraction, and atom probe tomography were used to relate the microstructural changes to mechanical properties. It is shown that such a combination of characterisation methods is necessary to quantify this complex alloy, and relate these microstructural changes to mechanical properties. It is concluded that a higher austenitisation temperature leads to a greater volume fraction of smaller Laves phase precipitates formed during ageing, which increase the strength and creep resistance but reduces toughness

    A phase-field model investigating the role of elastic strain energy during the growth of closely spaced neighbouring interphase precipitates

    Get PDF
    A multi-phase field method is developed to investigate the effects of transformation strain on the transformation kinetics, thermodynamic stability and pairing of interphase precipitates in micro-alloyed steels. The model conserves homogeneity of stress in the diffuse interface between elastically inhomogeneous phases and provides an explanation of the mechanism resulting in the pairing of two adjacent interphase precipitates. Several scenarios of inhomogeneous elastic conditions have been considered. The simulations for a situation where only the interfacial energy is considered to contribute to the transformation show that this energy can lead to the establishment of a neck between two neighbouring precipitates. However, if sufficient time is given, one of the precipitates will completely dissolve into its neighbouring particle. On the other hand, when both strain and interfacial energies act on the system, the bridge between the particles becomes stabilised leading to the pairing of the particles. This is a result of the particles tendency to minimise the strain energy due to the excessive strain field generated by the neck between the two particles

    Previous heat treatment inducing different plasma nitriding behaviors in martensitic stainless steel

    Get PDF
    In this work we report a study of the induced changes in structure and corrosion behavior of martensitic stainless steels nitrided by plasma immersion ion implantation (PI3) at different previous heat treatments. The samples were characterized by x-ray diffraction and glancing angle x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and potentiodynamic measurements. Depending on the proportion of retained austenite in the unimplanted material, different phase transformations are obtained at lower and intermediate temperatures of nitrogen implantation. At higher temperatures, the great mobility of the chromium yields CrN segregations like spots in random distribution, and the alpha'-martensite is degraded to alpha-Fe (ferrite). The nitrided layer thickness follows a fairly linear relationship with the temperature and a parabolic law with the process time. The corrosion resistance depends strongly on chromium segregation from the martensitic matrix, as a result of the formation of CrN during the nitrogen implantation process and the formation of CrxC during the heat treatment process. Briefly speaking, the best results are obtained using low tempering temperature and low implantation temperature (below 375 degrees) due to the increment of the corrosion resistance and nitrogen dissolution in the structure with not too high diffusion depths (about 5-10 mu m). (c) 2006 American Vacuum Society

    Surface preparation of powder metallurgical tool steels by means of wire electrical discharge machining

    Get PDF
    The surface of two types of powder metallurgical (PM) tool steels (i.e., with and without nitrogen) was prepared using wire electrical discharge machining (WEDM). From each grade of tool steel, seven surfaces corresponding to one to seven passes of WEDM were prepared. The WEDM process was carried out using a brass wire as electrode and deionized water as dielectric. After eachWEDM pass the surface of the tool steels was thoroughly examined. Surface residual stresses were measured by the X-ray diffraction (XRD) technique. The measured stresses were found to be of tensile nature. The surface roughness of the WEDM specimens was measured using interference microscopy. The surface roughness as well as the residual stress measurements indicated an insignificant improvement of these parameters after four passes of WEDM. In addition, the formed recast layer was characterized by means of scanning electron microscopy (SEM), XRD, and X-ray photoelectron spectroscopy (XPS). The characterization investigation clearly shows diffusion of copper and zinc from the wire electrode into the work material, even after the final WEDM step. Finally, the importance of eliminating excessive WEDM steps is thoroughly discussed

    The influence of thermal cycles on the microstructure of grade 92 steel

    Get PDF
    The microstructure in the heat-affected zone (HAZ) of welds made from the 9 wt pct chromium martensitic Grade 92 steel is complex and has not yet been completely understood. There is a lack of systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds as a function of the welding process. In this study, the microstructure in the HAZ of an as-fabricated single-pass bead-on-plate weld on a parent metal of Grade 92 steel was systematically investigated by using an extensive range of electron and ion-microscopy-based techniques. A dilatometer was used to apply controlled thermal cycles to simulate the microstructures in the different regions of the HAZ. A wide range of microstructural properties in the simulated materials were then characterized and compared with the experimental observations from the weld HAZ. It was found that the microstructure in the HAZ of a single-pass Grade 92 steel weld can be categorized as a function of a decreasing peak temperature reached as (1) the completely transformed (CT) region, in which the original matrix is completely reaustenitized with complete dissolution of the pre-existing secondary precipitate particles; (2) the partially transformed (PT) region, where the original matrix is partially reaustenitized along with a partial dissolution of the secondary precipitate particles from the original matrix; and (3) the overtempered (OT) region, where the pre-xisting precipitate particles coarsen. The PT region is considered to be the susceptible area for damage in the commonly reported HAZ failures in weldments constructed from these types of steels
    • …
    corecore