539 research outputs found

    Assessing extinction risk across the geographic ranges of plant species in Europe

    Get PDF
    Societal Impact Statement Plants play fundamental roles in ecosystems, yet merely 10% of species have an assessment of their global extinction risk. Through the integration of national Red Lists and comprehensive global plant distribution data, we identify previously unassessed plant species in Europe that are threatened throughout their geographic range and thus at risk of global extinction. Our workflow can be replicated to facilitate the integration of disparate national monitoring efforts around the world and help accelerate global plant risk assessments. Summary • A comprehensive extinction risk assessment for plant species is a global biodiversity target. However, currently, only 10% of plant diversity is assessed in the global Red List of Threatened Species. To guide conservation and restoration actions in times of accelerated species extinction, plant risk assessments must be expedited. • Here, we examine the extinction risk of vascular plant species in Europe through the integration of two data streams: (1) national Red Lists and (2) global plant distribution data from Kew's Plants of the World Online database. For each species listed on a national Red List, we create a list of countries that form part of its range and indicate the threat status in these countries, allowing us to calculate the percentage of the range in which a given species is listed as threatened. • We find that 7% to 9% of European vascular plant diversity is threatened in its entire range, the majority of which are single-country endemics. Of these globally threatened species, 84% currently have no assessment in the global Red List. • With increasing national biodiversity monitoring commitments shaping the post- 2020 policy environment, we anticipate that integrating national Red Lists with global plant distribution data is a scalable workflow that can help accelerate global risk assessments of plants

    Measles Virus Infection in a Transgenic Model Virus-Induced Immunosuppression and Central Nervous System Disease

    Get PDF
    AbstractMeasles virus (MV) infects 40 million persons and kills one million per year primarily by suppressing the immune system and afflicting the central nervous system (CNS). The lack of a suitable small animal model has impeded progress of understanding how MV causes disease and the development of novel therapies and improved vaccines. We tested a transgenic mouse line in which expression of the MV receptor CD46 closely mimicked the location and amount of CD46 found in humans. Virus replicated in and was recovered from these animals' immune systems and was associated with suppression of humoral and cellular immune responses. Infectious virus was recovered from the CNS, replicated primarily in neurons, and spread to distal sites presumably by fast axonal transport. Thus, a small animal model is available for analysis of MV pathogenesis

    Nutrient enrichment alters seasonal β-diversity in global grasslands

    Get PDF
    Intra-annual (i.e. seasonal) temporal niche partitioning is essential to the maintenance of biodiversity in many plant communities. However, understanding of how climate and global change drivers such as eutrophication influence seasonal niche partitioning in plant assemblages remains limited. We used early-season and late-season compositional data collected from 10 grassland sites around the world to explore relationships between climate variability and intra-annual species segregation (i.e. seasonal β-diversity) and to assess how nutrient enrichment alters seasonal β-diversity in plant communities. We then assessed whether changes in seasonal β-diversity in response to nutrient enrichment are underpinned by species turnover or nestedness and determined how specific functional groups (i.e. annual forbs, perennial forbs, C3 and C4 graminoids and legumes) respond to eutrophication within and across early and late sampling dates. We found a positive relationship between intra-annual temperature variability and seasonal β-diversity but observed no relationship between intra-annual precipitation variability and seasonal β-diversity. Nutrient enrichment increased seasonal β-diversity and increased turnover of species between early- and late-season communities. Nutrient enrichment reduced the abundance of C4 graminoids and legumes within and across sampling timepoints and eliminated intra-annual differences in these groups. In contrast, nutrient enrichment resulted in seasonal differences in C3 graminoids, which were not observed in control conditions and increased abundance of C3 graminoids and annual forbs within and across early and late sampling dates. Synthesis: Our understanding of how grasslands respond to various components of global change is primarily based on studies that document community changes at inter-annual scales. Using early-season and late-season compositional data from 10 grassland sites around the world, we show that nutrient enrichment increases seasonal β-diversity and alters intra-annual dynamics of specific functional groups in unique ways

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies.

    Get PDF
    OBJECTIVE To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms "quantitative" and "optical coherence tomography" from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS A total of 116 authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans, and suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants' consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS The modified Delphi method resulted in an expert-led guideline (evidence Class III; Grading of Recommendations, Assessment, Development and Evaluations [GRADE] criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition analysis, nomenclature and abbreviations, and statistical approach. It will be essential to update these recommendations to new research and practices regularly

    The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. discovery of the optical counterpart using the Dark Energy Camera

    Get PDF
    We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located 10.6 from the nucleus of NGC 4993 at redshift z=0.0098, consistent (for H0 = 70 km s−1 Mpc−1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of i = 17.3 and z = 17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    No full text
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz
    corecore